训练ChatGPT的必备资源:语料、模型和代码库完全指南

这篇具有很好参考价值的文章主要介绍了训练ChatGPT的必备资源:语料、模型和代码库完全指南。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

训练ChatGPT的必备资源:语料、模型和代码库完全指南

文|python

前言

近期,ChatGPT成为了全网热议的话题。ChatGPT是一种基于大规模语言模型技术(LLM, large language model)实现的人机对话工具。但是,如果我们想要训练自己的大规模语言模型,有哪些公开的资源可以提供帮助呢?在这个github项目中,人民大学的老师同学们从模型参数(Checkpoints)、语料和代码库三个方面,为大家整理并介绍这些资源。接下来,让我们一起来看看吧。

资源链接:
https://github.com/RUCAIBox/LLMSurvey

论文地址:
https://arxiv.org/pdf/2303.18223.pdf

各个大模型的研究测试传送门:

百度文心一言传送门:

https://yiyan.baidu.com/

​阿里通义千问传送门:

https://tongyi.aliyun.com/chat

ChatGPT传送门(免墙,可直接注册测试:

https://hujiaoai.cn

GPT-4传送门(免墙,可直接注册测试):

https://gpt4test.com

模型参数

从已经训练好的模型参数做精调、继续训练,无疑可以极大地降低计算成本。那目前有哪些开源的大模型参数,可以供我们选择呢?

第一类是100~1000亿参数的模型。这类模型除了LLaMA(650亿)之外,参数范围都集中在100~200亿之间。具体而言,包括:LLaMA[1], mT5[2], T0[3], GPT-NeoX-20B[4], CodeGen[5], UL2[6], Flan-T5[7], mT0[8], PanGu-α[9]。

其中,Flan-T5经过instruction tuning的训练;CodeGen专注于代码生成;mT0是个跨语言模型;PanGu-α有大模型版本,并且在中文下游任务上表现较好。

第二类是超过1000亿参数规模的模型。这类模型开源的较少,包括:OPT[10], OPT-IML[11], BLOOM[12], BLOOMZ[13], GLM[14], Galactica[15]。参数规模都在1000亿~2000亿之间。

其中,OPT是专为开源和大模型复现提出的;BLOOM 和 BLOOMZ具有跨语言能力;Galactica, GLM, 和 OPT-IML都是经过instruction tuning的。

这些模型参数大多使用几百到上千块显卡训练得到。比如GPT-NeoX-20B(200亿参数)使用了96个A100-SXM4-40GB GPU,LLaMA(650亿参数)使用了2048块A100-80G GPU学习了21天,OPT(1750亿参数)使用了992 A100-80GB GPU,GLM(1300亿参数)使用了768块DGX-A100-40G GPU训练了60天。

除了这些可供公开下载参数的模型之外,OpenAI还提供在他们的服务器上精调GPT-3模型的服务,可以选择的初始模型参数包括babbage(GPT-3 1B), curie(GPT-3 6.7B)和 davinci(GPT-3 175B)。

训练ChatGPT的必备资源:语料、模型和代码库完全指南

上图中,标黄的模型均为开源模型。

语料

训练大规模语言模型,训练语料不可或缺。主要的开源语料可以分成5类:书籍、网页爬取、社交媒体平台、百科、代码。

书籍语料包括:BookCorpus[16] 和 Project Gutenberg[17],分别包含1.1万和7万本书籍。前者在GPT-2等小模型中使用较多,而MT-NLG 和 LLaMA等大模型均使用了后者作为训练语料。

最常用的网页爬取语料是CommonCrawl[18]。不过该语料虽然很大,但质量较差。大模型大多采用从其中筛选得到的子集用于训练。常用的4个子集包括:C4[19], CC-Stories, CC-News[20], 和 RealNews[21]。CC-Stories的原版现在已不提供下载,一个替代选项是CC-Stories-R[22]。

社交媒体平台语料主要获取自Reddit平台。WebText包含了Reddit平台上的高赞内容,然而现在已经不提供下载,现在可以用OpenWebText[23]替代。此外,PushShift.io[24]提供了一个实时更新的Reddit的全部内容。

百科语料就是维基百科(Wikipedia[25])的下载数据。该语料被广泛地用于多种大语言模型(GPT-3, LaMDA, LLaMA 等),且提供多种语言版本,可用于支持跨语言模型训练。

代码语料主要来自于GitHub中的项目,或代码问答社区。开源的代码语料有谷歌的BigQuery[26]。大语言模型CodeGen在训练时就使用了BigQuery的一个子集。

除了这些单一内容来源的语料,还有一些语料集。比如 the Pile[27]合并了22个子集,构建了800GB规模的混合语料。而 ROOTS[28]整合了59种语言的语料,包含1.61TB的文本内容。

训练ChatGPT的必备资源:语料、模型和代码库完全指南

上图统计了这些常用的开源语料。目前的预训练模型大多采用多个语料资源合并作为训练数据。比如GPT-3使用了5个来源3000亿token(word piece),包含开源语料CommonCrawl, Wikipedia 和非开源语料(WebText2,Books1, Books2)。

代码库

使用代码库,可以帮助你快速搭建模型结构,而不用一个个矩阵乘法地搭建transformers结构。具体而言,包括以下7个:

  1. Transformers[29]是Hugging Face构建的用来快速实现transformers结构的库。同时也提供数据集处理与评价等相关功能。应用广泛,社区活跃。

  2. DeepSpeed[30]是一个微软构建的基于PyTorch的库。GPT-Neo,BLOOM等模型均是基于该库开发。DeepSpeed提供了多种分布式优化工具,如ZeRO,gradient checkpointing等。

  3. Megatron-LM[31]是NVIDIA构建的一个基于PyTorch的大模型训练工具,并提供一些用于分布式计算的工具如模型与数据并行、混合精度训练,FlashAttention与gradient checkpointing等。

  4. JAX[32]是Google Brain构建的一个工具,支持GPU与TPU,并且提供了即时编译加速与自动batching等功能。

  5. Colossal-AI[33]是EleutherAI基于JAX开发的一个大模型训练工具,支持并行化与混合精度训练。最近有一个基于LLaMA训练的对话应用ColossalChat就是基于该工具构建的。

  6. BMTrain[34] 是 OpenBMB开发的一个大模型训练工具,强调代码简化,低资源与高可用性。在其ModelCenter中,已经构建好如Flan-T5 与 GLM等模型结构可供直接使用。

  7. FastMoE[35] 是一个基于pytorch的用于搭建混合专家模型的工具,并支持训练时数据与模型并行。

结束语

通过使用以上提到的模型参数、语料与代码,我们可以极大地方便自己实现大规模语言模型,并搭建出自己的对话工具。但是,尽管数据资源相对容易获取,计算资源却十分稀缺。想要获得足够的显卡资源以训练/调整大规模模型,仍然是一件非常困难的事情。因此,私有化ChatGPT的道路任重而道远。在计算资源相对匮乏的情况下,我们更是要利用好手头的模型参数、语料与代码等资源,以有限的计算量取得最好的表现。

附:各个大模型的研究测试传送门:

百度文心一言传送门:

https://yiyan.baidu.com/

​阿里通义千问传送门:

https://tongyi.aliyun.com/chat

ChatGPT传送门(免墙,可直接注册测试):

https://yeschat.cn

GPT-4传送门(免墙,可直接注册测试):

https://gpt4test.com

卖萌屋作者:python

北大毕业的NLP博士。日常写点论文,码点知乎,刷点leetcode。主要关注问答、对话、信息抽取、预训练、智能法律等方向。力扣国服第一python选手(经常掉下来)。知乎 ID 是 Erutan Lai, leetcode/力扣 ID 是 pku_erutan,欢迎没事常来逛逛。

作品推荐

  1. 恕我直言,你的实验结论可能严重依赖随机数种子!

  2. AllenAI 发布万能问答系统 MACAW!各类题型样样精通,性能大幅超越 GPT-3!

  3. 吐血整理:论文写作中注意这些细节,能显著提升成稿质量

  4. 恕我直言,你的模型可能并没看懂 prompt 在说啥

后台回复关键词【入群

加入卖萌屋NLP、CV、搜推广与求职讨论群

[1]https://github.com/facebookresearch/llama

[2]https://huggingface.co/google/mt5-xxl/tree/main

[3]https://huggingface.co/bigscience/T0

[4]https://huggingface.co/EleutherAI/gpt-neox-20b/tree/main

[5]https://huggingface.co/Salesforce/codegen-16B-nl

[6]https://github.com/google-research/google-research/tree/master/ul2

[7]https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints

[8]https://github.com/bigscience-workshop/xmtf

[9]https://openi.pcl.ac.cn/PCL-Platform.Intelligence/PanGu-Alpha

[10]https://github.com/facebookresearch/metaseq/tree/main/projects/OPT

[11]https://huggingface.co/facebook/opt-iml-30b

[12]https://huggingface.co/bigscience/bloom

[13]https://github.com/bigscience-workshop/xmtf

[14]https://github.com/THUDM/GLM-130B

[15]https://huggingface.co/facebook/galactica-120b

[16]https://huggingface.co/datasets/bookcorpus

[17]https://www.gutenberg.org/

[18]https://commoncrawl.org/

[19]https://www.tensorflow.org/datasets/catalog/c4

[20]https://huggingface.co/datasets/cc_news

[21]https://github.com/rowanz/grover/tree/master/realnews

[22]https://huggingface.co/datasets/spacemanidol/cc-stories

[23]https://skylion007.github.io/OpenWebTextCorpus/

[24]https://files.pushshift.io/reddit/

[25]https://dumps.wikimedia.org/

[26]https://cloud.google.com/bigquery/public-data?hl=zh-cn

[27]https://pile.eleuther.ai/

[28]https://arxiv.org/abs/2303.03915

[29]https://huggingface.co/

[30]https://github.com/microsoft/DeepSpeed

[31]https://github.com/NVIDIA/Megatron-LM

[32]https://github.com/google/jax

[33]https://github.com/hpcaitech/ColossalAI

[34]https://github.com/OpenBMB/BMTrain

[35]https://github.com/laekov/fastmoe文章来源地址https://www.toymoban.com/news/detail-421028.html

到了这里,关于训练ChatGPT的必备资源:语料、模型和代码库完全指南的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 腾讯正式发布新混元大模型:规模超千亿,预训练语料超2万亿

    2023腾讯全球数字生态大会于9月7日举办,腾讯公司在此正式发布了其新的混元大模型。该模型参数规模超过千亿,预训练语料超过2万亿tokens,并已成功测试于腾讯云、腾讯广告、微信搜一搜等多个内部业务和产品中。 这一混元大模型不仅能服务于腾讯的产业场景,用户还可

    2024年02月09日
    浏览(34)
  • 一本书讲透ChatGPT——理论与实践的完美结合,大模型技术工程师的必备指南

    OpenAI 在 2022 年 11 月推出了人工智能聊天应用—ChatGPT。它具有广泛的应用场景,在多项专业和学术基准测试中表现出的智力水平,不仅接近甚至有时超越了人类的平均水平。这使得 ChatGPT 在推出之初就受到广大用户的欢迎,被科技界誉为人工智能领域的新里程碑。 人们在为生

    2024年03月13日
    浏览(38)
  • chatgpt赋能python:Python怎么输入一个数字?完全指南

    如果你正在学习Python,输入数字是一个必须知道的基本操作。在这篇文章中,我们将向你介绍Python中输入数字的多种方法,包括使用input()函数、命令行输入、文件输入等等。我们还将解释输入数字时可能遇到的一些问题,并解决这些问题的方法。 input()函数是Python中最简单的

    2024年02月05日
    浏览(69)
  • chatgpt赋能python:使用Python创建结构体:完全指南

    在Python编程领域,结构体是一种非常方便和有用的数据类型,用于存储和组织相关变量。在本篇文章中,我们将讨论如何使用Python创建结构体。让我们开始吧! 结构体是将多个变量打包在一起的一种数据类型。通常,它们在C和C++等编程语言中使用,用于创建自定义数据类型

    2024年02月07日
    浏览(70)
  • chatgpt赋能python:Python如何导入CSV的完全指南

    CSV是一种常见的数据格式,在数据分析和处理中使用广泛。使用Python,我们可以轻松地读取、处理和分析CSV文件。在本指南中,我们将介绍如何使用Python导入CSV文件。 CSV文件是按照逗号分隔值(Comma Separated Values)格式存储的电子表格数据。每个值都由逗号分隔,并且可以用

    2024年02月08日
    浏览(44)
  • 万字知识长文:ChatGPT 从零完全上手实操指南

    ChatGPT 的横空出世,让很多人焦虑不已,不过,你完全不需要为此焦虑,因为 比 AI 更强大永远是驾驭 AI 为自己所用的人类 。 而且  GPT   远没有各大商家炒作的那么玄乎   ,它应用逻辑也非常简单,你完全没必要为此去花钱报各种班学习。 今天我就用一篇文章带你掌握 G

    2024年02月02日
    浏览(52)
  • chatgpt赋能python:如何更新Python库?Python更新库完全指南

    Python作为一种最受欢迎的编程语言,其库和工具的数量是惊人的。这些库是Python生态系统的重要组成部分,以便帮助开发人员解决不同类型的问题。然而,这些库会更新,开发人员需要保持最新版本。在这个指南中,我们将重点介绍如何更新基本Python库。 当Python库更新是,它

    2024年02月09日
    浏览(40)
  • ChatGPT高质量prompt技巧指南-《向 ChatGPT 提问获取高质量答案的艺 术:Prompt 工程技术完全指南》图书分享

    一、图书简介:本书是一本全面的指南,介绍了各种 Prompt 技术的理解和利用,用于从 ChatGPT中生成高质量的答案。 我们将探讨如何使用不同的 Prompt 工程技术来实现不同的目标。ChatGPT 是一 种先进的语言模型,能够生成类似人类的文本。然而,了解正确的提问方式以获 取我

    2024年02月03日
    浏览(59)
  • 提问的艺术 for CHATGPT prompt 技术工程高质量答案完全指南

    关于 prompt 技巧的全面指导 前言 第 1 章:Prompt 工程技术介绍 什么是 Prompt 工程? 第 2 章:指令 Prompt 技术 示例: 第 3 章:角色 Prompt 第 4 章:标准 Prompt 第 5 章:零、一和少量样本 Prompt 第 6 章:“让我们想一想”Prompt 第 7 章:自我一致性 Prompt 第 8 章:种子词 Prompt 第 9 章

    2024年02月08日
    浏览(63)
  • ChatGPT常见术语清单;大厂ChatGPT混战汇总;提示工程技巧完全指南(中译);真机会VS假机会 | ShowMeAI日报

    👀 日报周刊合集 | 🎡 生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦! OpenAI 和 ChatGPT 的爆火,以超高的频率将大量AI术语带到了大家面前。这些抽象的词汇到底什么意思?彼此是什么关系?背后的技术难懂嘛? 这不!速查手册为你准备好了!中英双语版本,解释了

    2024年02月09日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包