【YOLOv7/YOLOv5系列算法改进NO.54】改进激活函数为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU等

这篇具有很好参考价值的文章主要介绍了【YOLOv7/YOLOv5系列算法改进NO.54】改进激活函数为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU等。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv7,YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
具体改进办法请关注后私信留言!关注免费领取深度学习算法学习资料!


一、解决问题

之前改进从改进的部位来分的话从输入端、主干特征提取网络(backbone)、特征融合网络(neck)、检测头等四个方面进行改进,从改进的方法包括添加注意力机制、损失函数改进、改变网络结构、替换主干特征提取网络、改进非极大值抑制、k-means++聚类算法等方面进行改进,本文尝试通过改进更为专用于视觉任务的激活函数来网络进行改进。原激活函数为SiLU激活函数,改进激活函数来提高检测效果。此前💡🎈☁️34. 更换激活函数为FReLU💡🎈☁️46. 改进激活函数为ACON💡🎈☁️47. 改进激活函数为GELU有一定效果。本文将尝试更多类型的激活函数,大家可以通过实验进行验证。

二、基本原理

原理部分以及需要写激活函数图代码,可以参考【学习经验分享NO.16】超全代码-python画Sigmoid,ReLU,Tanh等十多种激活函数曲线及其梯度曲线(持续更新)

三、​添加方法

pytorch框架里activation.py中已经定义了很多种激活函数,都可以用。相关代码如下所示。


class ReLU(Module):
    r"""Applies the rectified linear unit function element-wise:

    :math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ReLU.png

    Examples::

        >>> m = nn.ReLU()
        >>> input = torch.randn(2)
        >>> output = m(input)


      An implementation of CReLU - https://arxiv.org/abs/1603.05201

        >>> m = nn.ReLU()
        >>> input = torch.randn(2).unsqueeze(0)
        >>> output = torch.cat((m(input),m(-input)))
    """
    __constants__ = ['inplace']
    inplace: bool

    def __init__(self, inplace: bool = False):
        super(ReLU, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.relu(input, inplace=self.inplace)

    def extra_repr(self) -> str:
        inplace_str = 'inplace=True' if self.inplace else ''
        return inplace_str


class RReLU(Module):
    r"""Applies the randomized leaky rectified liner unit function, element-wise,
    as described in the paper:

    `Empirical Evaluation of Rectified Activations in Convolutional Network`_.

    The function is defined as:

    .. math::
        \text{RReLU}(x) =
        \begin{cases}
            x & \text{if } x \geq 0 \\
            ax & \text{ otherwise }
        \end{cases}

    where :math:`a` is randomly sampled from uniform distribution
    :math:`\mathcal{U}(\text{lower}, \text{upper})`.

     See: https://arxiv.org/pdf/1505.00853.pdf

    Args:
        lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
        upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/RReLU.png

    Examples::

        >>> m = nn.RReLU(0.1, 0.3)
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`:
        https://arxiv.org/abs/1505.00853
    """
    __constants__ = ['lower', 'upper', 'inplace']

    lower: float
    upper: float
    inplace: bool

    def __init__(
        self,
        lower: float = 1. / 8,
        upper: float = 1. / 3,
        inplace: bool = False
    ):
        super(RReLU, self).__init__()
        self.lower = lower
        self.upper = upper
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)

    def extra_repr(self):
        inplace_str = ', inplace=True' if self.inplace else ''
        return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str)


class Hardtanh(Module):
    r"""Applies the HardTanh function element-wise.

    HardTanh is defined as:

    .. math::
        \text{HardTanh}(x) = \begin{cases}
            1 & \text{ if } x > 1 \\
            -1 & \text{ if } x < -1 \\
            x & \text{ otherwise } \\
        \end{cases}

    The range of the linear region :math:`[-1, 1]` can be adjusted using
    :attr:`min_val` and :attr:`max_val`.

    Args:
        min_val: minimum value of the linear region range. Default: -1
        max_val: maximum value of the linear region range. Default: 1
        inplace: can optionally do the operation in-place. Default: ``False``

    Keyword arguments :attr:`min_value` and :attr:`max_value`
    have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardtanh.png

    Examples::

        >>> m = nn.Hardtanh(-2, 2)
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['min_val', 'max_val', 'inplace']

    min_val: float
    max_val: float
    inplace: bool

    def __init__(
        self,
        min_val: float = -1.,
        max_val: float = 1.,
        inplace: bool = False,
        min_value: Optional[float] = None,
        max_value: Optional[float] = None
    ) -> None:
        super(Hardtanh, self).__init__()
        if min_value is not None:
            warnings.warn("keyword argument min_value is deprecated and rename to min_val")
            min_val = min_value
        if max_value is not None:
            warnings.warn("keyword argument max_value is deprecated and rename to max_val")
            max_val = max_value

        self.min_val = min_val
        self.max_val = max_val
        self.inplace = inplace
        assert self.max_val > self.min_val

    def forward(self, input: Tensor) -> Tensor:
        return F.hardtanh(input, self.min_val, self.max_val, self.inplace)

    def extra_repr(self) -> str:
        inplace_str = ', inplace=True' if self.inplace else ''
        return 'min_val={}, max_val={}{}'.format(
            self.min_val, self.max_val, inplace_str
        )


class ReLU6(Hardtanh):
    r"""Applies the element-wise function:

    .. math::
        \text{ReLU6}(x) = \min(\max(0,x), 6)

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ReLU6.png

    Examples::

        >>> m = nn.ReLU6()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """

    def __init__(self, inplace: bool = False):
        super(ReLU6, self).__init__(0., 6., inplace)

    def extra_repr(self) -> str:
        inplace_str = 'inplace=True' if self.inplace else ''
        return inplace_str


class Sigmoid(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}


    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Sigmoid.png

    Examples::

        >>> m = nn.Sigmoid()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """

    def forward(self, input: Tensor) -> Tensor:
        return torch.sigmoid(input)


class Hardsigmoid(Module):
    r"""Applies the Hardsigmoid function element-wise.

    Hardsigmoid is defined as:

    .. math::
        \text{Hardsigmoid}(x) = \begin{cases}
            0 & \text{if~} x \le -3, \\
            1 & \text{if~} x \ge +3, \\
            x / 6 + 1 / 2 & \text{otherwise}
        \end{cases}

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardsigmoid.png

    Examples::

        >>> m = nn.Hardsigmoid()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['inplace']

    inplace: bool

    def __init__(self, inplace : bool = False) -> None:
        super(Hardsigmoid, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.hardsigmoid(input, self.inplace)


class Tanh(Module):
    r"""Applies the Hyperbolic Tangent (Tanh) function element-wise.

    Tanh is defined as:

    .. math::
        \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Tanh.png

    Examples::

        >>> m = nn.Tanh()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """

    def forward(self, input: Tensor) -> Tensor:
        return torch.tanh(input)

class SiLU(Module):
    r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
    The SiLU function is also known as the swish function.

    .. math::
        \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}

    .. note::
        See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
        where the SiLU (Sigmoid Linear Unit) was originally coined, and see
        `Sigmoid-Weighted Linear Units for Neural Network Function Approximation
        in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
        a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
        where the SiLU was experimented with later.

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/SiLU.png

    Examples::

        >>> m = nn.SiLU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['inplace']
    inplace: bool

    def __init__(self, inplace: bool = False):
        super(SiLU, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.silu(input, inplace=self.inplace)

    def extra_repr(self) -> str:
        inplace_str = 'inplace=True' if self.inplace else ''
        return inplace_str

class Mish(Module):
    r"""Applies the Mish function, element-wise.
    Mish: A Self Regularized Non-Monotonic Neural Activation Function.

    .. math::
        \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))

    .. note::
        See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Mish.png

    Examples::

        >>> m = nn.Mish()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['inplace']
    inplace: bool

    def __init__(self, inplace: bool = False):
        super(Mish, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.mish(input, inplace=self.inplace)

    def extra_repr(self) -> str:
        inplace_str = 'inplace=True' if self.inplace else ''
        return inplace_str

class Hardswish(Module):
    r"""Applies the hardswish function, element-wise, as described in the paper:

    `Searching for MobileNetV3`_.

    .. math::
        \text{Hardswish}(x) = \begin{cases}
            0 & \text{if~} x \le -3, \\
            x & \text{if~} x \ge +3, \\
            x \cdot (x + 3) /6 & \text{otherwise}
        \end{cases}

    Args:
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardswish.png

    Examples::

        >>> m = nn.Hardswish()
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _`Searching for MobileNetV3`:
        https://arxiv.org/abs/1905.02244
    """
    __constants__ = ['inplace']

    inplace: bool

    def __init__(self, inplace : bool = False) -> None:
        super(Hardswish, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.hardswish(input, self.inplace)


class ELU(Module):
    r"""Applies the Exponential Linear Unit (ELU) function, element-wise, as described
    in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
    Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.

    ELU is defined as:

    .. math::
        \text{ELU}(x) = \begin{cases}
        x, & \text{ if } x > 0\\
        \alpha * (\exp(x) - 1), & \text{ if } x \leq 0
        \end{cases}

    Args:
        alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/ELU.png

    Examples::

        >>> m = nn.ELU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['alpha', 'inplace']
    alpha: float
    inplace: bool

    def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
        super(ELU, self).__init__()
        self.alpha = alpha
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.elu(input, self.alpha, self.inplace)

    def extra_repr(self) -> str:
        inplace_str = ', inplace=True' if self.inplace else ''
        return 'alpha={}{}'.format(self.alpha, inplace_str)


class CELU(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))

    More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .

    Args:
        alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/CELU.png

    Examples::

        >>> m = nn.CELU()
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _`Continuously Differentiable Exponential Linear Units`:
        https://arxiv.org/abs/1704.07483
    """
    __constants__ = ['alpha', 'inplace']
    alpha: float
    inplace: bool

    def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
        super(CELU, self).__init__()
        self.alpha = alpha
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.celu(input, self.alpha, self.inplace)

    def extra_repr(self) -> str:
        inplace_str = ', inplace=True' if self.inplace else ''
        return 'alpha={}{}'.format(self.alpha, inplace_str)


class SELU(Module):
    r"""Applied element-wise, as:

    .. math::
        \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))

    with :math:`\alpha = 1.6732632423543772848170429916717` and
    :math:`\text{scale} = 1.0507009873554804934193349852946`.

    .. warning::
        When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
        ``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
        in order to get `Self-Normalizing Neural Networks`_.
        See :func:`torch.nn.init.calculate_gain` for more information.

    More details can be found in the paper `Self-Normalizing Neural Networks`_ .

    Args:
        inplace (bool, optional): can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/SELU.png

    Examples::

        >>> m = nn.SELU()
        >>> input = torch.randn(2)
        >>> output = m(input)

    .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
    """
    __constants__ = ['inplace']
    inplace: bool

    def __init__(self, inplace: bool = False) -> None:
        super(SELU, self).__init__()
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.selu(input, self.inplace)

    def extra_repr(self) -> str:
        inplace_str = 'inplace=True' if self.inplace else ''
        return inplace_str


class GLU(Module):
    r"""Applies the gated linear unit function
    :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
    of the input matrices and :math:`b` is the second half.

    Args:
        dim (int): the dimension on which to split the input. Default: -1

    Shape:
        - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`

    Examples::

        >>> m = nn.GLU()
        >>> input = torch.randn(4, 2)
        >>> output = m(input)
    """
    __constants__ = ['dim']
    dim: int

    def __init__(self, dim: int = -1) -> None:
        super(GLU, self).__init__()
        self.dim = dim

    def forward(self, input: Tensor) -> Tensor:
        return F.glu(input, self.dim)

    def extra_repr(self) -> str:
        return 'dim={}'.format(self.dim)


class GELU(Module):
    r"""Applies the Gaussian Error Linear Units function:

    .. math:: \text{GELU}(x) = x * \Phi(x)

    where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/GELU.png

    Examples::

        >>> m = nn.GELU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    def forward(self, input: Tensor) -> Tensor:
        return F.gelu(input)


class Hardshrink(Module):
    r"""Applies the Hard Shrinkage (Hardshrink) function element-wise.

    Hardshrink is defined as:

    .. math::
        \text{HardShrink}(x) =
        \begin{cases}
        x, & \text{ if } x > \lambda \\
        x, & \text{ if } x < -\lambda \\
        0, & \text{ otherwise }
        \end{cases}

    Args:
        lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Hardshrink.png

    Examples::

        >>> m = nn.Hardshrink()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['lambd']
    lambd: float

    def __init__(self, lambd: float = 0.5) -> None:
        super(Hardshrink, self).__init__()
        self.lambd = lambd

    def forward(self, input: Tensor) -> Tensor:
        return F.hardshrink(input, self.lambd)

    def extra_repr(self) -> str:
        return '{}'.format(self.lambd)


class LeakyReLU(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)


    or

    .. math::
        \text{LeakyRELU}(x) =
        \begin{cases}
        x, & \text{ if } x \geq 0 \\
        \text{negative\_slope} \times x, & \text{ otherwise }
        \end{cases}

    Args:
        negative_slope: Controls the angle of the negative slope. Default: 1e-2
        inplace: can optionally do the operation in-place. Default: ``False``

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    .. image:: ../scripts/activation_images/LeakyReLU.png

    Examples::

        >>> m = nn.LeakyReLU(0.1)
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['inplace', 'negative_slope']
    inplace: bool
    negative_slope: float

    def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
        super(LeakyReLU, self).__init__()
        self.negative_slope = negative_slope
        self.inplace = inplace

    def forward(self, input: Tensor) -> Tensor:
        return F.leaky_relu(input, self.negative_slope, self.inplace)

    def extra_repr(self) -> str:
        inplace_str = ', inplace=True' if self.inplace else ''
        return 'negative_slope={}{}'.format(self.negative_slope, inplace_str)


class LogSigmoid(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/LogSigmoid.png

    Examples::

        >>> m = nn.LogSigmoid()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """

    def forward(self, input: Tensor) -> Tensor:
        return F.logsigmoid(input)


class Softplus(Module):
    r"""Applies the Softplus function :math:`\text{Softplus}(x) = \frac{1}{\beta} *
    \log(1 + \exp(\beta * x))` element-wise.

    SoftPlus is a smooth approximation to the ReLU function and can be used
    to constrain the output of a machine to always be positive.

    For numerical stability the implementation reverts to the linear function
    when :math:`input \times \beta > threshold`.

    Args:
        beta: the :math:`\beta` value for the Softplus formulation. Default: 1
        threshold: values above this revert to a linear function. Default: 20

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Softplus.png

    Examples::

        >>> m = nn.Softplus()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['beta', 'threshold']
    beta: int
    threshold: int

    def __init__(self, beta: int = 1, threshold: int = 20) -> None:
        super(Softplus, self).__init__()
        self.beta = beta
        self.threshold = threshold

    def forward(self, input: Tensor) -> Tensor:
        return F.softplus(input, self.beta, self.threshold)

    def extra_repr(self) -> str:
        return 'beta={}, threshold={}'.format(self.beta, self.threshold)


class Softshrink(Module):
    r"""Applies the soft shrinkage function elementwise:

    .. math::
        \text{SoftShrinkage}(x) =
        \begin{cases}
        x - \lambda, & \text{ if } x > \lambda \\
        x + \lambda, & \text{ if } x < -\lambda \\
        0, & \text{ otherwise }
        \end{cases}

    Args:
        lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Softshrink.png

    Examples::

        >>> m = nn.Softshrink()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['lambd']
    lambd: float

    def __init__(self, lambd: float = 0.5) -> None:
        super(Softshrink, self).__init__()
        self.lambd = lambd

    def forward(self, input: Tensor) -> Tensor:
        return F.softshrink(input, self.lambd)

    def extra_repr(self) -> str:
        return str(self.lambd)


class MultiheadAttention(Module):
    r"""Allows the model to jointly attend to information
    from different representation subspaces as described in the paper:
    `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.

    Multi-Head Attention is defined as:

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O

    where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.

    Args:
        embed_dim: Total dimension of the model.
        num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
            across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
        dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
        bias: If specified, adds bias to input / output projection layers. Default: ``True``.
        add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
        add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
            Default: ``False``.
        kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
        vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
        batch_first: If ``True``, then the input and output tensors are provided
            as (batch, seq, feature). Default: ``False`` (seq, batch, feature).

    Examples::

        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
    """
    __constants__ = ['batch_first']
    bias_k: Optional[torch.Tensor]
    bias_v: Optional[torch.Tensor]

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
                 kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.batch_first = batch_first
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self._qkv_same_embed_dim is False:
            self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
            self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
            self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
            self.register_parameter('in_proj_weight', None)
        else:
            self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
            self.register_parameter('q_proj_weight', None)
            self.register_parameter('k_proj_weight', None)
            self.register_parameter('v_proj_weight', None)

        if bias:
            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
        else:
            self.register_parameter('in_proj_bias', None)
        self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)

        if add_bias_kv:
            self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
            self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        self._reset_parameters()

    def _reset_parameters(self):
        if self._qkv_same_embed_dim:
            xavier_uniform_(self.in_proj_weight)
        else:
            xavier_uniform_(self.q_proj_weight)
            xavier_uniform_(self.k_proj_weight)
            xavier_uniform_(self.v_proj_weight)

        if self.in_proj_bias is not None:
            constant_(self.in_proj_bias, 0.)
            constant_(self.out_proj.bias, 0.)
        if self.bias_k is not None:
            xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            xavier_normal_(self.bias_v)

    def __setstate__(self, state):
        # Support loading old MultiheadAttention checkpoints generated by v1.1.0
        if '_qkv_same_embed_dim' not in state:
            state['_qkv_same_embed_dim'] = True

        super(MultiheadAttention, self).__setstate__(state)

    def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
                need_weights: bool = True, attn_mask: Optional[Tensor] = None,
                average_attn_weights: bool = True) -> Tuple[Tensor, Optional[Tensor]]:
        r"""
    Args:
        query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
            or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
            :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
            Queries are compared against key-value pairs to produce the output.
            See "Attention Is All You Need" for more details.
        key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
            or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
            :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
            See "Attention Is All You Need" for more details.
        value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
            ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
            sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
            See "Attention Is All You Need" for more details.
        key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
            to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
            Binary and byte masks are supported.
            For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
            the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
            value will be ignored.
        need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
            Default: ``True``.
        attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
            :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
            :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
            broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
            Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
            corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
            corresponding position is not allowed to attend. For a float mask, the mask values will be added to
            the attention weight.
        average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
            heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
            effect when ``need_weights=True.``. Default: True (i.e. average weights across heads)

    Outputs:
        - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
          :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
          where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
          embedding dimension ``embed_dim``.
        - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
          returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
          :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
          :math:`S` is the source sequence length. If ``average_weights=False``, returns attention weights per
          head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.

        .. note::
            `batch_first` argument is ignored for unbatched inputs.
        """
        is_batched = query.dim() == 3
        if self.batch_first and is_batched:
            query, key, value = [x.transpose(1, 0) for x in (query, key, value)]

        if not self._qkv_same_embed_dim:
            attn_output, attn_output_weights = F.multi_head_attention_forward(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight, average_attn_weights=average_attn_weights)
        else:
            attn_output, attn_output_weights = F.multi_head_attention_forward(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, average_attn_weights=average_attn_weights)
        if self.batch_first and is_batched:
            return attn_output.transpose(1, 0), attn_output_weights
        else:
            return attn_output, attn_output_weights

class PReLU(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{PReLU}(x) = \max(0,x) + a * \min(0,x)

    or

    .. math::
        \text{PReLU}(x) =
        \begin{cases}
        x, & \text{ if } x \geq 0 \\
        ax, & \text{ otherwise }
        \end{cases}

    Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
    parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
    a separate :math:`a` is used for each input channel.


    .. note::
        weight decay should not be used when learning :math:`a` for good performance.

    .. note::
        Channel dim is the 2nd dim of input. When input has dims < 2, then there is
        no channel dim and the number of channels = 1.

    Args:
        num_parameters (int): number of :math:`a` to learn.
            Although it takes an int as input, there is only two values are legitimate:
            1, or the number of channels at input. Default: 1
        init (float): the initial value of :math:`a`. Default: 0.25

    Shape:
        - Input: :math:`( *)` where `*` means, any number of additional
          dimensions.
        - Output: :math:`(*)`, same shape as the input.

    Attributes:
        weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).

    .. image:: ../scripts/activation_images/PReLU.png

    Examples::

        >>> m = nn.PReLU()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """
    __constants__ = ['num_parameters']
    num_parameters: int

    def __init__(self, num_parameters: int = 1, init: float = 0.25,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.num_parameters = num_parameters
        super(PReLU, self).__init__()
        self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs).fill_(init))

    def forward(self, input: Tensor) -> Tensor:
        return F.prelu(input, self.weight)

    def extra_repr(self) -> str:
        return 'num_parameters={}'.format(self.num_parameters)


class Softsign(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{SoftSign}(x) = \frac{x}{ 1 + |x|}

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Softsign.png

    Examples::

        >>> m = nn.Softsign()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """

    def forward(self, input: Tensor) -> Tensor:
        return F.softsign(input)


class Tanhshrink(Module):
    r"""Applies the element-wise function:

    .. math::
        \text{Tanhshrink}(x) = x - \tanh(x)

    Shape:
        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
        - Output: :math:`(*)`, same shape as the input.

    .. image:: ../scripts/activation_images/Tanhshrink.png

    Examples::

        >>> m = nn.Tanhshrink()
        >>> input = torch.randn(2)
        >>> output = m(input)
    """

    def forward(self, input: Tensor) -> Tensor:
        return F.tanhshrink(input)


class Softmin(Module):
    r"""Applies the Softmin function to an n-dimensional input Tensor
    rescaling them so that the elements of the n-dimensional output Tensor
    lie in the range `[0, 1]` and sum to 1.

    Softmin is defined as:

    .. math::
        \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    Args:
        dim (int): A dimension along which Softmin will be computed (so every slice
            along dim will sum to 1).

    Returns:
        a Tensor of the same dimension and shape as the input, with
        values in the range [0, 1]

    Examples::

        >>> m = nn.Softmin()
        >>> input = torch.randn(2, 3)
        >>> output = m(input)
    """
    __constants__ = ['dim']
    dim: Optional[int]

    def __init__(self, dim: Optional[int] = None) -> None:
        super(Softmin, self).__init__()
        self.dim = dim

    def __setstate__(self, state):
        self.__dict__.update(state)
        if not hasattr(self, 'dim'):
            self.dim = None

    def forward(self, input: Tensor) -> Tensor:
        return F.softmin(input, self.dim, _stacklevel=5)

    def extra_repr(self):
        return 'dim={dim}'.format(dim=self.dim)

class Softmax(Module):
    r"""Applies the Softmax function to an n-dimensional input Tensor
    rescaling them so that the elements of the n-dimensional output Tensor
    lie in the range [0,1] and sum to 1.

    Softmax is defined as:

    .. math::
        \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}

    When the input Tensor is a sparse tensor then the unspecifed
    values are treated as ``-inf``.

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    Returns:
        a Tensor of the same dimension and shape as the input with
        values in the range [0, 1]

    Args:
        dim (int): A dimension along which Softmax will be computed (so every slice
            along dim will sum to 1).

    .. note::
        This module doesn't work directly with NLLLoss,
        which expects the Log to be computed between the Softmax and itself.
        Use `LogSoftmax` instead (it's faster and has better numerical properties).

    Examples::

        >>> m = nn.Softmax(dim=1)
        >>> input = torch.randn(2, 3)
        >>> output = m(input)

    """
    __constants__ = ['dim']
    dim: Optional[int]

    def __init__(self, dim: Optional[int] = None) -> None:
        super(Softmax, self).__init__()
        self.dim = dim

    def __setstate__(self, state):
        self.__dict__.update(state)
        if not hasattr(self, 'dim'):
            self.dim = None

    def forward(self, input: Tensor) -> Tensor:
        return F.softmax(input, self.dim, _stacklevel=5)

    def extra_repr(self) -> str:
        return 'dim={dim}'.format(dim=self.dim)


class Softmax2d(Module):
    r"""Applies SoftMax over features to each spatial location.

    When given an image of ``Channels x Height x Width``, it will
    apply `Softmax` to each location :math:`(Channels, h_i, w_j)`

    Shape:
        - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
        - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)

    Returns:
        a Tensor of the same dimension and shape as the input with
        values in the range [0, 1]

    Examples::

        >>> m = nn.Softmax2d()
        >>> # you softmax over the 2nd dimension
        >>> input = torch.randn(2, 3, 12, 13)
        >>> output = m(input)
    """

    def forward(self, input: Tensor) -> Tensor:
        assert input.dim() == 4 or input.dim() == 3, 'Softmax2d requires a 3D or 4D tensor as input'
        return F.softmax(input, -3, _stacklevel=5)


class LogSoftmax(Module):
    r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional
    input Tensor. The LogSoftmax formulation can be simplified as:

    .. math::
        \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)

    Shape:
        - Input: :math:`(*)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(*)`, same shape as the input

    Args:
        dim (int): A dimension along which LogSoftmax will be computed.

    Returns:
        a Tensor of the same dimension and shape as the input with
        values in the range [-inf, 0)

    Examples::

        >>> m = nn.LogSoftmax()
        >>> input = torch.randn(2, 3)
        >>> output = m(input)
    """
    __constants__ = ['dim']
    dim: Optional[int]

    def __init__(self, dim: Optional[int] = None) -> None:
        super(LogSoftmax, self).__init__()
        self.dim = dim

    def __setstate__(self, state):
        self.__dict__.update(state)
        if not hasattr(self, 'dim'):
            self.dim = None

    def forward(self, input: Tensor) -> Tensor:
        return F.log_softmax(input, self.dim, _stacklevel=5)

    def extra_repr(self):
        return 'dim={dim}'.format(dim=self.dim)

第二步:common.py构建模块。重构Conv模块。将SILU改为ELU,即为选择了ELU激活函数。如图所示。
同理,可以将ELU激活函数换为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU、GLU、GELU、Hardshrink、LeakyReLU、LogSigmoid、Softplus、Softshrink、PReLU、Softmin等数十种激活函数。
【YOLOv7/YOLOv5系列算法改进NO.54】改进激活函数为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU等
第三步:将train.py中改为本文的yaml文件即可,开始训练,即可将原Conv中的激活函数改为其他的函数。

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!


YOLO系列算法改进方法 | 目录一览表
💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️6. 增加小目标检测层
💡🎈☁️7. 损失函数改进
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️9. 锚框K-Means算法改进K-Means++
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS
💡🎈☁️20. Involution新神经网络算子引入网络
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络
💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积
💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv
💡🎈☁️29. 引入Swin Transformer v2.0版本
💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️34. 更换激活函数为FReLU
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制
💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络
💡🎈☁️38. 引入RepVGG模型结构
💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022
💡🎈☁️40. 轻量化mobileone主干网络引入
💡🎈☁️41. 引入SPD-Conv处理低分辨率图像和小对象问题
💡🎈☁️42. 引入V7中的ELAN网络
💡🎈☁️43. 结合最新Non-local Networks and Attention结构
💡🎈☁️44. 融入适配GPU的轻量级 G-GhostNet
💡🎈☁️45. 首发最新特征融合技术RepGFPN(DAMO-YOLO)
💡🎈☁️46. 改进激活函数为ACON
💡🎈☁️47. 改进激活函数为GELU
💡🎈☁️48. 构建新的轻量网络—Slim-neck by GSConv(2022CVPR)
💡🎈☁️49. 模型剪枝、蒸馏、压缩
💡🎈☁️50. 超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet
💡🎈☁️51.融入多分支空洞卷积结构RFB-Bottleneck改进PANet构成新特征融合网络
💡🎈☁️52.将YOLOv8中的C2f模块融入YOLOv5
💡🎈☁️53.融入CFPNet网络中的ECVBlock模块,提升小目标检测能力文章来源地址https://www.toymoban.com/news/detail-421211.html

到了这里,关于【YOLOv7/YOLOv5系列算法改进NO.54】改进激活函数为ReLU、RReLU、Hardtanh、ReLU6、Sigmoid、Tanh、Mish、Hardswish、ELU、CELU等的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包