回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信。本课程将分为复杂数据的回归及混合效应模型概述及数据探索;回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);贝叶斯(brms)回归与混合效应模型;相关数据回归与混合效应模型及贝叶斯实现,包括嵌套数据、时间自相关数据,空间自相数据及系统发育数据分析;非线性数据回归分析及贝叶斯实现,包括广义可加(混合)模型和非线性(混合)模型等。
点击查看原文
导师:张博士:来自中国科学院及重点高校资深专家,长期从事R语言模型、群落生态学、保护生物学、景观生态学和生态模型方面的研究和教学工作,以发表了多篇论文,拥有丰富的科研及实践经验。
1复杂数据回归模型的选择策略
1)科学研究中数据及其复杂性
2)回归分析历史、理论基础
3)回归分析基本假设和常见问题
4)复杂数据回归模型选择策略
2如何通过数据探索避免常见统计问题
- 数据缺失(missing value)
- 零值(zero trouble)
- 奇异值/离群值(outliers)
- 异质性(heterogeneity)
- 数据分布正态性(normality)
- 响应变量与预测变量间关系(relationships)
- 交互作用项(interaction)
- 共线性(collinearity)
- 样本独立性(independence)
专题一:回归与混合效应(多水平/层次/嵌套)模型
1.1一般线性模型(lm)
1)基本形式、基本假设、估计方法、参数检验、模型检验
2)一般线性回归、方差分析及协方差分析
3)一般线性回归模型验证
4)一般线性回归模型选择-逐步回归
案例1:鱼类游速与水温关系的回归及协方差分析;
案例2:施肥和种植密度对作物产量的影响文章来源:https://www.toymoban.com/news/detail-421306.html
案例3文章来源地址https://www.toymoban.com/news/detail-421306.html
到了这里,关于R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!