深度学习技巧应用2-神经网络中的‘残差连接’

这篇具有很好参考价值的文章主要介绍了深度学习技巧应用2-神经网络中的‘残差连接’。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,我是微学AI,今天给大家介绍 深度学习技巧应用2-神经网络中的‘残差连接’。

一、残差连接介绍

残差连接是一种神经网络中的一种运用技巧。由于深层网络容易出现梯度消失或梯度爆炸的问题,因此可以通过残差连接的方式,将网络的深度扩展到数十层以上,从而提高模型的性能。残差连接的基本思想是,在网络的某些层中,将输入的信号直接连接到输出,从而在网络中引入“跨层连接”。

深度学习技巧应用2-神经网络中的‘残差连接’

二、残差连接解决问题

残差连接技巧主要用于深度神经网络的训练中,尤其是在深度网络层数较多时。具体而言,残差连接技巧可以应用于以下几个场景:

解决梯度消失问题:深度神经网络的层数增加时,梯度的传播容易受到梯度消失的影响,导致训练困难。残差连接技巧可以通过跨层直接连接来提供捷径,从而缓解梯度消失问题。

提高模型性能:残差连接技巧可以增加模型的深度,从而提高模型的表达能力和性能。此外,由于残差连接可以提供跨层直接连接的效果,因此可以帮助模型更好地学习特征,从而进一步提高模型性能。

降低训练难度:残差连接技巧可以加速模型的训练,从而降低训练难度。由于残差连接可以提供跨层直接连接的效果,因此可以使模型更容易收敛,减少训练时间和计算资源的消耗。 总之,残差连接技巧在深度学习领域中具有广泛的应用价值,可以帮助深度神经网络更好地学习特征和提高性能,也可以降低训练难度和消耗。

三、残差连接原理

残差连接(Residual Connection)是指在神经网络中,将前一层的输出直接与后一层的输入相加,从而构成了一种跨层连接的方式。这种跨层连接的计算方式:

假设前一层的输出为,后一层的输入为 ,则残差连接可以表示为:

深度学习技巧应用2-神经网络中的‘残差连接’

其中 是后一层的非线性变换(例如 ReLU 或 sigmoid),+ 表示元素级别的相加运算。 这种跨层连接的主要目的是解决深度神经网络中的梯度消失和梯度爆炸问题。

深度学习技巧应用2-神经网络中的‘残差连接’

 在传统的神经网络中,每一层的输入都是前一层的输出,通过不断地进行非线性变换,逐渐提取高级别的特征。但是,随着网络层数的增加,梯度在反向传播过程中会逐渐变小,从而导致模型训练出现困难。 残差连接通过直接将前一层的输出加到后一层的输入中,使得梯度能够更容易地传递到前一层,从而使得深度神经网络的训练更加容易。此外,残差连接还能够减少模型的训练误差,并且可以提高模型的泛化能力,从而更好地适应未见过的数据。因此,在深度学习领域,残差连接已经成为了一种广泛使用的技术,被应用于各种神经网络模型中,例如 ResNet、DenseNet 等。

四、残差连接代码实例

下面举一个简单的全连接神经网络,包含若干个使用残差连接的残差块(ResidualBlock),这些残差块通过 nn.ModuleList 组成了一个残差网络(ResidualNet)。在每个残差块中,前一层的输出(即 identity)会被直接加到后一层的输入(即 out)中,从而实现了残差连接的效果。残差网络通过调用 forward 方法来进行前向传播。代码实例:

import torch.nn as nn
import torch

class ResidualBlock(nn.Module):
    def __init__(self, in_features, out_features):
        super(ResidualBlock, self).__init__()
        self.linear1 = nn.Linear(in_features, out_features)
        self.relu = nn.ReLU(inplace=True)
        self.linear2 = nn.Linear(out_features, out_features)

    def forward(self, x):
        identity = x
        out = self.linear1(x)
        out = self.relu(out)
        out = self.linear2(out)
        out += identity
        out = self.relu(out)
        return out

class ResidualNet(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, num_blocks):
        super(ResidualNet, self).__init__()
        self.linear1 = nn.Linear(in_features, hidden_features)
        self.relu = nn.ReLU(inplace=True)
        self.blocks = nn.ModuleList([ResidualBlock(hidden_features, hidden_features) for _ in range(num_blocks)])
        self.linear2 = nn.Linear(hidden_features, out_features)

    def forward(self, x):
        out = self.linear1(x)
        out = self.relu(out)
        for block in self.blocks:
            out = block(out)
        out = self.linear2(out)
        return out

下面构造一个大小为 的随机输入数据 ,然后使用上面定义的残差网络模型 model 对这个输入数据进行预测。最后,我们输出了预测结果 y_pred,它的大小为 ,其中每一行代表了一个样本的预测结果,共有 2 个类别。预测结果可以通过计算交叉熵损失和进行反向传播来进行模型训练。

# 构造输入数据
x = torch.randn(10, 5)  # 输入数据大小为 10x5

# 构造残差网络模型
model = ResidualNet(in_features=5, hidden_features=10, out_features=2, num_blocks=2)

# 进行模型预测
y_pred = model(x)

# 输出预测结果
print(y_pred)

更多细节,可以关注微学AI,欢迎私信与合作。文章来源地址https://www.toymoban.com/news/detail-421311.html

 
                    

到了这里,关于深度学习技巧应用2-神经网络中的‘残差连接’的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包