❤️ ❤️ ❤️ 爆:使用ChatGPT+Streamlit快速构建机器学习数据集划分应用程序!!!

这篇具有很好参考价值的文章主要介绍了❤️ ❤️ ❤️ 爆:使用ChatGPT+Streamlit快速构建机器学习数据集划分应用程序!!!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

❤️ ❤️ ❤️ 爆:使用ChatGPT+Streamlit快速构建机器学习数据集划分应用程序!!!

ChatGPT 对于 Python 程序员有用吗?特别是我们这些使用 Python 进行数据处理、数据清洗和构建机器学习模型的人?我们试试就知道了。

来自 OpenAI 的 ChatGPT 是什么?假设你已经知道了。网上铺天盖地的宣传呐喊,我想不再需要介绍了。加入您碰巧不知道 ChatGPT 是什么,赶快去查查,不然会被人嘲笑的,然后再回来继续。

与 ChatGPT 的对话可以是有趣的,甚至是有启发性的。但是让我们看看它实际上有多大帮助。

让我们看看 ChatGPT 在根据我们提供的规范编写代码时能做些什么。我们将从简单开始,并从那里开始构建。

一、简单数据集处理脚本

我认为最好从某种数据处理脚本开始。因为我打算稍后让 ChatGPT 使用各种 Python 库编写一些机器学习脚本,所以这似乎是一个合理的起点。

1.目标

首先,我想尝试加载一个数据集; 确保所有数据集值都是数值,或者将它们转换为数值; 检查缺失的值; 并将数据集分割为训练集和测试集。

2.用户提示

Write a Python script that does the following:
- loads a dataset from csv on disk to Pandas DataFrame
- ensures that dataset is entirely numeric; converts string values to numeric and tracks this conversion in a dictionary to reference later
- checks for missing values in the DataFrame and imputes missing values for any record that has one missing value; entirely drops a record that has more than one missing value
- splits the dataset into test and training sets

编写一个 Python 脚本,执行以下操作:

- 将磁盘上的 csv 数据集加载到 Pandas DataFrame

- 确保数据集完全是数字; 将字符串值转换为数字,并在字典中跟踪这种转换,以便以后引用

- 检查 DataFrame 中是否缺少值,并为缺少一个值的任何记录计算缺少值; 完全删除一个缺少多个值的记录

- 将数据集分成测试集和训练集

3.GhatGPT返回代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

# Load the dataset from csv to a Pandas DataFrame
df = pd.read_csv("dataset.csv")

# Ensure the dataset is entirely numeric
# Convert string values to numeric and track this conversion in a dictionary to reference later
string_columns = df.columns[df.dtypes == 'object']
string_to_numeric = {}
for column in string_columns:
    unique_values = df[column].unique()
    mapping = {value: i for i, value in enumerate(unique_values)}
    string_to_numeric[column] = mapping
    df[column] = df[column].map(mapping)

# Check for missing values in the DataFrame
missing_values = df.isna().sum()

# Impute missing values for any record that has one missing value; entirely drop a record that has more than one missing value
for column, missing_value_count in missing_values.items():
    if missing_value_count == 1:
        df[column].fillna(df[column].mean(), inplace=True)
    elif missing_value_count > 1:
        df.dropna(subset=[column], inplace=True)

# Split the dataset into test and training sets
train_data, test_data, train_target, test_target = train_test_split(df.drop('target', axis=1), df['target'], test_size=0.2, random_state=0)

注意: 此脚本假定目标变量存储在 DataFrame 中名为 target 的列中。您需要根据数据集的结构修改此代码。

4.结果分析

ChatGPT 生成了一个有用的脚本。它可以加载一个data.csv的数据集,以及训练集/测试集分割的比例,并记录了这两点以及如果需要的话如何更改它们。总的来说,任务完成了。


二、重构我们的代码

1.目标

现在我们已经有了一个执行某些操作的脚本,让我们对它进行一些重构。良好编码的基础是使用函数来组织逻辑代码,促进重用,并确保您不会重复。

2.用户提示

Rewrite the above script to use a series of functions that make sense

重写上面的脚本,使用一系列有意义的函数

3.GhatGPT返回代码

Here’s the script refactored into a series of functions that make sense:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

def load_dataset(filepath):
    """Loads a dataset from a csv file to a Pandas DataFrame"""
    return pd.read_csv(filepath)

def convert_to_numeric(df):
    """Ensures the dataset is entirely numeric and converts string values to numeric"""
    string_columns = df.columns[df.dtypes == 'object']
    string_to_numeric = {}
    for column in string_columns:
        unique_values = df[column].unique()
        mapping = {value: i for i, value in enumerate(unique_values)}
        string_to_numeric[column] = mapping
        df[column] = df[column].map(mapping)
    return df, string_to_numeric

def handle_missing_values(df):
    """Handles missing values by imputing a mean for records with one missing value, and dropping records with more than one missing value"""
    missing_values = df.isna().sum()
    for column, missing_value_count in missing_values.items():
        if missing_value_count == 1:
            df[column].fillna(df[column].mean(), inplace=True)
        elif missing_value_count > 1:
            df.dropna(subset=[column], inplace=True)
    return df

def split_dataset(df, target_column, test_size=0.2, random_state=0):
    """Splits the dataset into test and training sets"""
    train_data, test_data, train_target, test_target = train_test_split(df.drop(target_column, axis=1), df[target_column], test_size=test_size, random_state=random_state)
    return train_data, test_data, train_target, test_target

# Load the dataset from csv to a Pandas DataFrame
df = load_dataset("dataset.csv")

# Convert string values to numeric and handle missing values
df, string_to_numeric = convert_to_numeric(df)
df = handle_missing_values(df)

# Split the dataset into test and training sets
train_data, test_data, train_target, test_target = split_dataset(df, "target")

Note: This script assumes that the target variable is stored in a column named target in the DataFrame. You’ll need to modify this code based on the structure of your dataset.

在这里,ChatGPT使用了四个函数:

1.load_dataset(filepath) :加载 csv 数据集

2.convert_to_numeric(df) :将字符串值转换为数值。

3.handle_missing_values(df):处理数据集中缺少的值。

4.split_dataset(df, target_column, test_size=0.2, random_state=0) :将数据集划分为测试集和训练集。

测试样例使用这些函数来加载、转换和清理数据集,然后将其拆分为测试集和训练集。

数据集的路径和测试比例是这些函数的输入。

4.结果分析

我们从 ChatGPT 的第一个脚本可以看出一些非常明显的逻辑代码块,可以将这些代码块按功能封装成函数。ChatGPT 做了我期望它做的事情。同样,生成了一个合格的脚本。

三、扩展我们的代码

1.目标

我们的脚本现在看起来好看点了,因为它使用了一些函数。接下来,让我们稍微扩展一下脚本,以便用户可以在运行脚本时指定一些参数。

2.用户提示

Rewrite the above program to solicit the following from the command line in the form of arguments, and use them in the program:
- the path/name of the dataset csv file
- the train/test split size
- the threshold for the number of missing values per record to drop after which to drop entire record, instead of imputing the missing values

重写上面的程序,以参数的形式从命令行获取以下内容,并在程序中使用它们:

- 数据集 csv 文件的路径/名称

- 训练集/测试集的分割比例

- 每条记录丢失值数量的阈值,在该阈值之后删除整条记录,而不是输入丢失值

3.GhatGPT返回代码

Here’s the script refactored to solicit the arguments from the command line:

import pandas as pd
import numpy as np
import argparse
from sklearn.model_selection import train_test_split

def load_dataset(filepath):
    """Loads a dataset from a csv file to a Pandas DataFrame"""
    return pd.read_csv(filepath)

def convert_to_numeric(df):
    """Ensures the dataset is entirely numeric and converts string values to numeric"""
    string_columns = df.columns[df.dtypes == 'object']
    string_to_numeric = {}
    for column in string_columns:
        unique_values = df[column].unique()
        mapping = {value: i for i, value in enumerate(unique_values)}
        string_to_numeric[column] = mapping
        df[column] = df[column].map(mapping)
    return df, string_to_numeric

def handle_missing_values(df, missing_value_threshold):
    """Handles missing values by imputing a mean for records with one missing value, and dropping records with more than one missing value"""
    missing_values = df.isna().sum()
    for column, missing_value_count in missing_values.items():
        if missing_value_count <= missing_value_threshold:
            df[column].fillna(df[column].mean(), inplace=True)
        elif missing_value_count > missing_value_threshold:
            df.dropna(subset=[column], inplace=True)
    return df

def split_dataset(df, target_column, test_size=0.2, random_state=0):
    """Splits the dataset into test and training sets"""
    train_data, test_data, train_target, test_target = train_test_split(df.drop(target_column, axis=1), df[target_column], test_size=test_size, random_state=random_state)
    return train_data, test_data, train_target, test_target

if __name__ == '__main__':
    # Define the command line arguments
    parser = argparse.ArgumentParser(description='Handles missing values and splits a dataset into test and training sets')
    parser.add_argument('filepath', type=str, help='The path/name of the dataset csv file')
    parser.add_argument('test_size', type=float, help='The test/train split size')
    parser.add_argument('missing_value_threshold', type=int, help='The number of missing values per record after which to drop the entire record, instead of imputing the missing values')
    args = parser.parse_args()

    # Load the dataset from csv to a Pandas DataFrame
    df = load_dataset(args.filepath)

    # Convert string values to numeric and handle missing values
    df, string_to_numeric = convert_to_numeric(df)
    df = handle_missing_values(df, args.missing_value_threshold)

    # Split the dataset into test and training sets
    train_data, test_data, train_target, test_target = split_dataset(df, df.columns[-1], test_size=args.test_size)

This script can be run from the command line with the following command format:

python script_name.py filepath test_size missing_value_threshold 

4.结果分析

老实说,这里不需要太多的分析,因为 ChatGPT 的注释已经很好地解释了它的功能。他竟然告诉我们该怎么执行代码!!!

四、将我们的代码转换为一个 Streamlit 应用程序

1.目标

现在,让假设我们想让这段代码在应用程序中使用。让 ChatGPT 将这些函数包装到 Streamlit 应用程序中。

2.用户提示

Rewrite the above program as a Streamlit app, allowing for the user to provide the same arguments as in the command line args above

将上面的程序重写为 Streamlit 应用程序,允许用户提供与上面命令行 args 中相同的参数

3.GhatGPT返回代码

Here’s the script refactored as a Streamlit app:

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

def load_dataset(filepath):
    """Loads a dataset from a csv file to a Pandas DataFrame"""
    return pd.read_csv(filepath)

def convert_to_numeric(df):
    """Ensures the dataset is entirely numeric and converts string values to numeric"""
    string_columns = df.columns[df.dtypes == 'object']
    string_to_numeric = {}
    for column in string_columns:
        unique_values = df[column].unique()
        mapping = {value: i for i, value in enumerate(unique_values)}
        string_to_numeric[column] = mapping
        df[column] = df[column].map(mapping)
    return df, string_to_numeric

def handle_missing_values(df, missing_value_threshold):
    """Handles missing values by imputing a mean for records with one missing value, and dropping records with more than one missing value"""
    missing_values = df.isna().sum()
    for column, missing_value_count in missing_values.items():
        if missing_value_count <= missing_value_threshold:
            df[column].fillna(df[column].mean(), inplace=True)
        elif missing_value_count > missing_value_threshold:
            df.dropna(subset=[column], inplace=True)
    return df

def split_dataset(df, target_column, test_size=0.2, random_state=0):
    """Splits the dataset into test and training sets"""
    train_data, test_data, train_target, test_target = train_test_split(df.drop(target_column, axis=1), df[target_column], test_size=test_size, random_state=random_state)
    return train_data, test_data, train_target, test_target

def main():
    """Main function for the Streamlit app"""
    st.title("Dataset Preprocessing App")

    # Get the file path, test size, and missing value threshold from the user
    file_path = st.text_input("Enter the path/name of the dataset csv file:")
    test_size = st.slider("Enter the test/train split size:", 0.0, 1.0, 0.2)
    missing_value_threshold = st.slider("Enter the number of missing values per record after which to drop the entire record, instead of imputing the missing values:", 0, 100, 1)

    # Load the dataset and convert string values to numeric
    df = load_dataset(file_path)
    df, string_to_numeric = convert_to_numeric(df)

    # Handle missing values
    df = handle_missing_values(df, missing_value_threshold)

    # Split the dataset into test and training sets
    train_data, test_data, train_target, test_target = split_dataset(df, df.columns[-1], test_size=test_size)

    # Show the final processed data
    st.write("Processed Dataset:")
    st.write(df)

    st.write("Train Data:")
    st.write(train_data)
    st.write("Train Target:")
    st.write(train_target)

    st.write("Test Data:")
    st.write(test_data)
    st.write("Test Target:")
    st.write(test_target)
if name == 'main':
	main()

To run the Streamlit app, you can save the above code in a .py file and run it in the command line with the following command:

要运行 Streamlit 应用程序,可以将上面的代码保存在‘.py‘ 文件中,并使用以下命令在命令行中运行它:

streamlit run file_name.py

4.结果分析

它做了它该做的事。ChatGPT 利用我们的功能,建立了一个简单的 Streamlit Web应用。

五、总结

完成以上四步之后,我们检验下代码是否可以正常运行,需要做一下几步操作:

1、安装streamlit 库

pip install streamlit

2、安装 scikit-learn库

pip install scikit-learn

3、开开心心的执行

streamlit run main.py

vscode代码:
❤️ ❤️ ❤️ 爆:使用ChatGPT+Streamlit快速构建机器学习数据集划分应用程序!!!
运行的web程序:
❤️ ❤️ ❤️ 爆:使用ChatGPT+Streamlit快速构建机器学习数据集划分应用程序!!!

搞定!NB class ChatGPT!文章来源地址https://www.toymoban.com/news/detail-421529.html

到了这里,关于❤️ ❤️ ❤️ 爆:使用ChatGPT+Streamlit快速构建机器学习数据集划分应用程序!!!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用ChatGPT构建一个AIML聊天机器人是什么体验

    ​ 使用ChatGPT构建一个AIML聊天机器人是什么体验,使用ChatGPT将C#代码转换为Swift代码以实现Swift版的Aiml聊天机器人,AIML(全名为Artificial Intelligence Markup Language)是一种基于XML模式匹配的人工智能标记语言,最早是一个名为\\\"A.L.I.C.E.\\\" (“Artificial Linguistic Internet Computer Entity”)的高

    2024年02月11日
    浏览(49)
  • 如何使用自定义知识库构建自定义ChatGPT机器人

    目录   隐藏  使用自定义数据源为您的 ChatGPT 机器人提供数据 1. 通过Prompt提示工程提供数据 2. 使用 LlamaIndex(GPT 索引)扩展 ChatGPT 如何添加自定义数据源 先决条件 怎么运行的 最后的总结 ChatGPT 已成为许多人日常用来自动执行各种任务的不可或缺的工具。如果您已经使用

    2024年02月08日
    浏览(46)
  • 使用Streamlit 实现一个聊天机器人界面

    效果如下: 只需要效果generate_llama2_response 为你的 llm的输出即可。

    2024年03月09日
    浏览(88)
  • 论文(3)——使用ChatGPT快速提高科研能力!!如何快速构建代码?怎么提高自己的科研能力?如何提高自己的生产力?

    引言 chatGPT大模型用于问问题和debug,NewBing用于搜索论文,cpolit用于写代码…各种各样的工具层出不穷,之前因为课程和各种琐事,也就胡乱接触了一下,并没有进行系统性的总结。 这不,暑假要做系统性的科研了,也要好好写代码了(之前也在好好写代码),就需要好好总

    2024年02月16日
    浏览(50)
  • 使用 YOLOv8 和 Streamlit 构建实时对象检测和跟踪应用程序:第 1 部分-介绍和设置

    示例:图像上的对象检测 实时视频中的目标检测和跟踪是计算机视觉的一个重要领域,在监控、汽车和机器人等各个领域都有广泛的应用。 由于需要能够识别和跟踪对象、确定其位置并对它们进行实时分类的自动化系统,对视频帧中的实时对象检测和跟踪的需求日益增加。

    2024年02月17日
    浏览(43)
  • 使用Gradio Interface构建交互式机器学习演示

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 博主原文链接:https://www.yourmetaverse.cn/nlp/231/ (封面图由文心一格生成) 在

    2024年02月09日
    浏览(86)
  • 机器人技能学习-构建自己的数据集并进行训练

    若想训练自己的场景,数据集的重要性不做过多赘述,下面就基于 robomimic 和 robosuite 构建自己的数据集进行讲解,同时,也会附上 train 和 run 的流程,这样,就形成了闭环。 采集数据可使用脚本 collect_human_demonstrations.py 完成,在采集过程中,需要自己定义 env 的相关信息,在实际

    2024年01月16日
    浏览(48)
  • 机器学习任务中使用计算图构建和训练模型的流程

    The goal is to encourage the project team to think more long-term and not judge success solely based on tactical results. This requires a shift in mindset to prioritize strategic thinking and understanding the bigger picture. It involves reevaluating the current perspective and approach to ensure that decisions and actions align with long-term goals and obje

    2024年02月10日
    浏览(39)
  • 【小白】使用 Amazon SageMaker 构建机器学习应用【附全程部署视频】

    全程部署视频看这里,原视频30分钟左右为了观看体验剪掉了等待时间: 小白使用Amazon SageMaker 构建机器学习应用 Amazon SageMaker: https://aws.amazon.com/cn/sagemaker/ 输入名称、选择实例类型、配置磁盘大小,具体如下图 创建新角色,选择任意S3存储桶,点击创建角色 配置VPC网络,选

    2023年04月18日
    浏览(49)
  • Python小知识 - 【Python】如何使用Pytorch构建机器学习模型

    【Python】如何使用Pytorch构建机器学习模型 机器学习是人工智能的一个分支,它的任务是在已有的数据集上学习,最终得到一个能够解决新问题的模型。Pytorch是一个开源的机器学习框架,它可以让我们用更少的代码构建模型,并且可以让模型训练的过程更加简单。 首先,我们

    2024年02月09日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包