Python基础—conda使用笔记

这篇具有很好参考价值的文章主要介绍了Python基础—conda使用笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python基础—conda使用笔记


1. 环境配置

  • 由于用conda管理虚拟环境真滴很方便,所以主要使用conda,就不单独去装Python了。

1.1. Miniconda3安装

  • Miniconda3官网下载地址:Miniconda
  • Miniconda3清华镜像下载:清华镜像-Miniconda
  • 对于Windows系统:Miniconda安装跟正常的软件安装是一样的,这里不做过多描述。
  • 当然,可以参考博客,写得很详细:python与anaconda安装(先安装了python后安装anaconda,基于python已存在的基础上安装anaconda)——逼死强迫症、超详解

1.2. 配置环境变量

  • 在系统变量—Path中添加Miniconda的相关路径
  • 这里我的Miniconda的安装路径是:D:\DeveloperTools\Miniconda3,所以在Path中添加如下:
    D:\DeveloperTools\Miniconda3\Library\bin
    D:\DeveloperTools\Miniconda3\Scripts
    D:\DeveloperTools\Miniconda3
    
  • 环境变量配置了,就可以在任意位置下使用conda了
    Python基础—conda使用笔记

1.3. 设置国内镜像源

1.3.1. 方法一:命令行方式

  1. 查看anaconda中已经存在的镜像源(channels:通道、渠道、途径)

    conda config --show channels
    
    • 如果没有设置过镜像源,则show channels结果显示:defaults(conda默认的通道,即从官网下载包)
  2. 添加国内镜像源,这里以清华镜像源为例(永久添加,可删除)

    conda config --add channels  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    conda config --add channels  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    
    • 值得注意的是:上面设置的两个源的资源路径为:/anaconda/paks/free/anaconda/pkgs/main这就限制了只能在这资源路径之下查找我们需要的包。
    • 如果后面需要用到深度学习,TensorFlow、YOLO,PyTorch等,包的来源可能不再自己设置的两个资源路径之下,所以可能找不到。
    • 所以,建议直接多设置几个源,国内常用的镜像源(注:可能镜像源地址有变化,注意甄别)
      清华大学镜像源
      https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
      https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
      https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
      阿里镜像源
      http://mirrors.aliyun.com/pypi/simple/
      http://mirrors.aliyun.com/anaconda/pkgs/main
      http://mirrors.aliyun.com/anaconda/pkgs/free
      https://mirrors.aliyun.com/anaconda/pkgs/main/
      https://mirrors.aliyun.com/anaconda/cloud/conda-forge/
      https://mirrors.aliyun.com/anaconda/cloud/bioconda/
      豆瓣镜像源
      http://pypi.douban.com/simple/
      Python官方
      https://pypi.python.org/simple/
      
  3. 删除已添加的指定镜像源,例如:

    conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    
  4. 恢复为默认的镜像源(即从官网下载包)

    conda config --remove-key channels
    
  5. 设置搜索时显示通道地址,如果 C:\Users(用户)\username\路径下没有.condarc文件,则需要在cmd命令行执行如下命令

    conda config --set show_channel_urls yes
    
  6. 查看到Anaconda/Miniconda的所有信息,在channel URLs一栏,可以看到添加的镜像网站

    conda info
    

Python基础—conda使用笔记

1.3.2. 方法二:修改 .condarc 文件

  • C:\Users(用户)\username\路径下的.condarc文件,记录着我们对conda的配置,直接手动创建、编辑该文件是相同的效果。
  • 如果C:\Users(用户)\username\路径下没有.condarc文件,则需要在cmd命令行执行如下命令
    conda config --set show_channel_urls yes
    
    Python基础—conda使用笔记
    Python基础—conda使用笔记

1.3.3. 补充

  • 后续在Pycharm中使用conda创建一个新环境时,发现上面的源设置有点问题,使用Pycharm总是无法创建,但在conda命令行中创建又可以。
  • 解决,参考文章:https://www.jianshu.com/p/b1e4f33f975a
  • 这里直接给出相关的设置,复制粘贴到.condarc文件中即可
    channels:
      - defaults
    show_channel_urls: true
    channel_alias: http://mirrors.tuna.tsinghua.edu.cn/anaconda
    default_channels:
      - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
      - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
      - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
      - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
      - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
    custom_channels:
      conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
      simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
    

1.3.4. 设置临时镜像源

  • 有时也可能只需要临时使用某个镜像源下载某个模块,则可以临时指定下载的镜像源
  • 直接指定安装模块时使用的镜像源地址,以opencv为例:
    conda install opencv -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    

2. conda使用

  • 使用前,可以了解什么是虚拟环境?以及如何配置虚拟环境?
  • 可参考文章:什么是虚拟环境?以及如何配置虚拟环境

2.1. 自定义conda创建虚拟环境的默认路径

  • 由于使用conda创建的虚拟环境,默认是保存在C盘下的,随着后面虚拟环境创建的越多,下载的包越多,则占用的空间越大,所以修改conda创建虚拟环境的默认路径到其他盘。
    conda创建虚拟环境的默认路径为 C:\Users\your_username\.conda\envs\
    conda安装包的默认路径为 C:\Users\your_username\.conda\pkgs\
    若不想占用C盘空间,需要修改 conda 虚拟环境的默认路径 和 安装包的默认路径
    
  • 当然如果你的空间足够大,也可以不用设置。
  • 参考文章:修改conda默认envs_dirs和pkgs_dirs

2.1.1. 方法一:命令行方式

  1. 在Anaconda Prompt 或 cmd 中执行如下命令
    • 注:路径改为你自己想要保存conda虚拟环境的路径
    conda config --add envs_dirs D:\DeveloperTools\Miniconda3\envs
    conda config --add pkgs_dirs D:\DeveloperTools\Miniconda3\pkgs
    
  2. 在Anaconda Prompt 或 cmd 中执行下列语句,查看是否配置成功
    conda info  #在 envs directories 一栏看到自己设置的虚拟环境路径
    # 或
    conda config --show   #在 envs_dirs 和 pkgs_dirs 栏都可以看到自己设置的虚拟环境路径
    

2.1.2. 方法二:修改.condarc 文件

  • C:\Users(用户)\username\路径下的.condarc文件中添加需要存放conda虚拟环境的路径

    envs_dirs:
      - D:\DeveloperTools\Miniconda3\envs
      - D:\DeveloperTools\Miniconda3\pkgs
    

    Python基础—conda使用笔记

  • 按照方法一中的命令,可查看是否配置成功。

2.1.3. 补充:对于 Windows设置未生效的情况

  • 对于 Windows11或其他Windows版本,有时候即使conda info查看添加的虚拟环境路径已存在,但是当添加一个新的虚拟环境时,还是下载到了默认的C盘的路径下。

  • 解决办法:修改自己用于保存conda虚拟环境的文件夹的权限,以及设置的envspkgs文件夹的权限为:完全控制
    Python基础—conda使用笔记

  • envspkgs文件夹同理,权限也需要设置为:完全控制

2.2. conda命令对python虚拟环境管理

  1. 查看conda配置的所有虚拟环境,终端中,左边显示的(base)表示安装conda时自带的基础环境

    conda env list  (或conda info --envs,简写:conda info -e)
    # 说明:结果中星号"*"所在行即为当前所在环境
    

    Python基础—conda使用笔记

  2. 创建新的虚拟环境

    # conda create --name your_env_name python版本
    例如:
    conda create --name PyTorch python=3.8
    # 安装一个名为PyTorch的Python虚拟环境,Python版本是3.8(不用管是3.8.x,conda会为我们自动寻找3.8.x中的最新版本)
    
    # 在指定文件路径创建
    conda create --prefix=C:/ProgramData/Anaconda3/envs/pytorch python=3.8
    
    • 如果创建虚拟环境时没有指定Python的版本,那么默认会安装与Anaconda / Miniconda版本相同的Python版本,即如果安装Anaconda第2版,则会自动安装Python2.x;如果安装Anaconda第3版,则会自动安装Python3.x
  3. 使用指定的某个虚拟环境

    # conda activate 虚拟环境名称
    conda activate PyTorch  # 激活名称为 PyTorch 的虚拟环境
    
  4. 退出/关闭指定的某个虚拟环境

    conda deactivate
    
  5. 删除指定的某个虚拟环境

    • 注:不要在所处的当前环境内,删除当前环境!否则可能会出现异常
    # conda env remove --name your_env_name
    conda env remove --name PyTorch
    # 或
    # conda remove --name your_env_name --all
    conda remove --name PyTorch --all
    
  6. 克隆(复制)一份已有的虚拟环境

    • 因为本来没有给虚拟环境重命名的,所以理论上可以用克隆(复制)后再删除原来的环境的方式实现重命名
    • 但不建议这样来重命名,因为修改后会有一些路径上的BUG
    # conda create --name new_env_name --clone old_env_name
    conda create --name Tensorflow --clone PyTorch
    # 复制名为 PyTorch 的虚拟环境 以此用于创建一个新的名为 Tensorflow 的虚拟环境
    

2.3. conda常用命令

  • 注:在不同的虚拟环境中,查询包、安装包、更新包、卸载包都是独立的。
  1. 查看包
    conda --version    #查看系统安装的conda版本
    conda list         # 查看当前环境下已安装的包
    conda list --name your_env_name    #查看某个指定环境的已安装包
    conda search 库名    #查找package信息
    conda search 库名 -info   #查看某一个模块的信息,没有该模块则无
    
  2. 安装包
    conda install package_name     #在当前环境中安装包
    conda install package_name=version    #在当前环境中安装指定版本号的包
    # 当使用 conda install 无法进行安装时,可以使用 pip 进行安装
    # 对于 .whl 文件,conda命令似乎不能正确安装,还是要用pip命令才行
    
  3. 更新包
    conda update package_name      #更新当前环境中的指定包
    
    # 更新多个指定包,则包名以空格隔开,向后排列。例如:
    conda update pandas numpy matplotlib    #即更新pandas、numpy、matplotlib包
    
    conda update --all  #更新当前虚拟环境中所有的包
    
    # conda将conda、python等都视为package,因此,完全可以使用conda来管理conda和python的版本
    conda update conda       #更新conda,保持conda最新
    conda update anaconda    #更新anaconda
    conda update python    #更新当前虚拟环境下的Python版本,假设当前环境是python 3.8.10,运行后,conda会将python升级为3.8.x系列的当前最新版本
    
  4. 卸载包
    conda remove package_name     #卸载当前虚拟环境中的指定包
    

到底了 😃文章来源地址https://www.toymoban.com/news/detail-421532.html

到了这里,关于Python基础—conda使用笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用 python 源码搭建 conda 环境

    下载并解压后,在源码目录执行 可以看到一堆配置参数,大部份我们都不需要关心。为了避免新编译的 python 污染系统已有的环境变量,这里只需要设置 --prefix 参数(即编译出的 python 存放位置,注意:这个参数需要绝对路径,我是在当前目录下新建了一个文件夹:268)。了

    2024年02月10日
    浏览(36)
  • 使用 conda 管理多个版本 python 环境

    node-sass 4.14.1 版本依赖 python2.7(高版本的 node-sass 可能依赖 python3),所以需要安装 python,这里使用 多版本管理工具 conda 创建一个 python2.7 的环境。 查询所有已经安装的环境:

    2024年02月11日
    浏览(64)
  • python(8):使用conda update更新conda后,anaconda所有环境崩溃----问题没有解决,不要轻易更新conda

    (1) 不要轻易使用 conda update 更新 conda ----我遇到了解决不了的问题 python (2) 使用 python 时一定要用工具,如 anaconda 等,管理自己创建的虚拟环境,不要让自己创建的环境污染系统的base环境,不然就需要重新安装系统了----我这里目前最好的解决方案是删除并重装 anaconda (系统的

    2024年02月03日
    浏览(65)
  • Python 包管理(pip、conda)基本使用指南

    介绍 Python 有丰富的开源的第三方库和包,可以帮助完成各种任务,扩展 Python 的功能,例如 NumPy 用于科学计算,Pandas 用于数据处理,Matplotlib 用于绘图等。在开始编写 Pytlhon 程序之前,可能需要安装一些常用的Python库,以便在编程过程中能够轻松地使用它们。 为了方便地管

    2024年02月11日
    浏览(53)
  • 【Python】conda虚拟环境下使用pyinstaller打包程序为exe

    第一点是,pyinstaller打包需要指定程序中使用的库的路径,新手在这一点上很容易出现问题,导致打包后的exe程序执行的时候显示 缺少模块 。这个问题可能并不能通过简单地指定路径来解决。 第二点就是使用虚拟环境本身的好处了: 可以创建多个不同的Python环境,每个环境

    2024年02月09日
    浏览(58)
  • 使用Pycharm导入conda environment 时,找不到python.exe

    在pycharm创建项目时,使用conda environmnet,在 Anaconda-envs-pytorch-python.exe 寻找过程中,没有发现python.exe。但是在文件中,却存在python.exe   如果你下载的高版本,就会出现这种情况, 低版本则可在 conda environment 中配置成功  

    2024年02月15日
    浏览(49)
  • pycharm使用conda创建的虚拟环境时找不到python.exe

    问题:在创建的虚拟环境中没有找到python.exe文件  解决方案:可能是condaba版本不一样,新版本选不到.exe文件 在anaconda软件的安装目录下选择condabin——conda.bat 然后加载环境,就可以选择创建的虚拟环境了  

    2024年02月04日
    浏览(49)
  • 使用矩池云 Docker 虚拟机安装VNC、Conda、Python及CUDA

    矩池云虚拟机支持 Docker 使用,但是由于虚拟机目前不支持启动时传递环境变量来设置VNC、Jupyterlab 连接密码,所以我们没有创建相关基础镜像(设置固定密码容易泄漏),下面给大家介绍手动安装使用 VNC、Jupyterlab、CUDA等步骤,以便支持使用 OpenGL 等功能的使用,开启更完善

    2024年03月25日
    浏览(45)
  • Pycharm使用Anaconda虚拟环境找不到Python.exe:报错:Conda executable is not found

    很多同学在初始配置虚拟环境的时候都会用到Anaconda(Conda)系列,然而,使用Pycharm配置python环境的时候却找不到虚拟环境里的python.exe文件,报错:Conda executable is not found,具体见下图 将虚拟环境加入到环境变量里(不解?) 找到conda.exe(实践后发现anaconda不认这个exe文件) 直接

    2024年02月13日
    浏览(59)
  • Anaconda虚拟环境下更换python版本【不论升版本、降版本都使用conda install python命令】【注意:修改版本后原来使用pip安装的包会被删掉,无法使用】

    使用python -V命令查看当前虚拟环境的python版本: 可知python版本为为3.7.15,现在我想把它升级为3.8。 使用命令: 可知python版本已经变为3.8。 如果在conda install python=3.8中遇到问题,例如: Solving environment: failed with initial frozen solve. Retrying with flexible solve.  则可以先使用:  当当

    2024年02月11日
    浏览(87)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包