【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

这篇具有很好参考价值的文章主要介绍了【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

昨天在github上看到一个在本地部署中文大模型的项目,和大家分享一下。先把地址po出来。

项目名称:中文LLaMA&Alpaca大语言模型+本地部署 (Chinese LLaMA & Alpaca LLMs)
项目地址:https://github.com/ymcui/Chinese-LLaMA-Alpaca

以下是原github中给出的体验GIF,可以看到这个模型还是具备一定的指令理解和上下文对话能力的。
【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

由于模型使用的是LoRA(一种高效模型训练方法),所以整个模型的参数量是比较小的(压缩包大概不到800M),但是需要和原版Facebook的权重进行结合才能使用。其实Facebook开源了,但又没完全开源,薛定谔的猫(滑稽)。所以大家自己想办法去搞到原版权重吧。

整个合并流程在原项目里写的都比较清楚,大家可以自己去看一下,需要alpaca-lora和llama.cpp两个工具。
具体步骤就不赘述了,感兴趣的看一下项目中的描述。

我使用的是苹果M1芯片,整体上没遇到什么麻烦,很顺利的就完成了模型量化过程,最终模型大概是4G。接下来就可以欢快地在本地玩耍了。解码参数就用的项目中提供的默认配置。

接下来就用量化后的模型测一下效果。需要注意的是量化后会有精度损失,效果应该是没有完整版的好,但好在速度快。

我先问一个关于温室效应的问题

整体上我觉得答得还是蛮不错的,而且也具备一些上下文的理解能力,而不是单轮能力。
【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

再问一个数学问题

可以看到这里的回答不尽人意,也是很多开源模型的硬伤,对数值计算和推理方面不是很在行。
【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

如何制作宫保鸡丁?

可以看到制作宫保鸡丁的一些要素是包含了,但是可以想象出这个做出来可能并不是宫保鸡丁 😂
【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

写一封信

写信方面做的还是不错的,虽然里面有一些小细节还需要再斟酌和修改。
【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

最后再来几个翻译吧

整体翻译的还是不错的,没有什么大毛病。
【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca

总结

整体而言,该模型具备一定的中文理解能力,也有类似ChatGPT的指令执行和上下文理解能力,对于一些常规的非推理类的任务来说还是比较好的。但也能看到在数学、推理、代码等场景效果不好。这可能是因为训练数据里没有涉及太多这部分数据的关系。相信之后会有更多类似的模型出现,进一步降低大模型的门槛。文章来源地址https://www.toymoban.com/news/detail-422096.html

到了这里,关于【类ChatGPT】本地CPU部署中文羊驼大模型LLaMA和Alpaca的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【LLM】Windows本地CPU部署民间版中文羊驼模型踩坑记录

    【LLM】Windows本地CPU部署民间版中文羊驼模型踩坑记录

    目录 前言 准备工作 Git  Python3.9  Cmake 下载模型  合并模型 部署模型  想必有小伙伴也想跟我一样体验下部署大语言模型, 但碍于经济实力, 不过民间上出现了大量的量化模型, 我们平民也能体验体验啦~, 该模型可以在笔记本电脑上部署, 确保你电脑至少有16G运行内存 开原地址

    2023年04月27日
    浏览(7)
  • 本地训练中文LLaMA模型实战教程,民间羊驼模型,24G显存盘它!

    博文1:本地部署中文LLaMA模型实战教程,民间羊驼模型 博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型(本博客) 博文3:精调训练中文LLaMA模型实战教程,民间羊驼模型 在学习完上篇【1本地部署中文LLaMA模型实战教程,民间羊驼模型】后,我们已经学会了下载模型,

    2024年02月10日
    浏览(13)
  • 精调训练中文LLaMA模型实战教程,民间羊驼模型

    精调训练中文LLaMA模型实战教程,民间羊驼模型

    博文1:本地部署中文LLaMA模型实战教程,民间羊驼模型 博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型 博文3:精调训练中文LLaMA模型实战教程,民间羊驼模型(本博客) 在学习完上篇【博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型】后,我们已经学会了使用

    2024年02月09日
    浏览(10)
  • llama.cpp一种在本地CPU上部署的量化模型(超低配推理llama)

    llama.cpp一种在本地CPU上部署的量化模型(超低配推理llama)

    前不久,Meta前脚发布完开源大语言模型LLaMA, 随后就被网友“泄漏”,直接放了一个磁力链接下载链接。 然而那些手头没有顶级显卡的朋友们,就只能看看而已了 但是 Georgi Gerganov 开源了一个项目llama.cpp ggerganov/llama.cpp: Port of Facebook’s LLaMA model in C/C++ (github.com) 次项目的牛逼

    2023年04月23日
    浏览(6)
  • 【个人笔记本】本地化部署详细流程 LLaMA中文模型:Chinese-LLaMA-Alpaca-2

    不推荐小白,环境配置比较复杂 下载原始模型:Chinese-LLaMA-Alpaca-2 linux部署llamacpp环境 使用llamacpp将Chinese-LLaMA-Alpaca-2模型转换为gguf模型 windows部署Text generation web UI 环境 使用Text generation web UI 加载模型并进行对话 笔记本环境: 操作系统:win11 CPU:AMD R7535HS GPU:笔记本4060显卡

    2024年02月08日
    浏览(12)
  • 中文大语言模型 Llama-2 7B(或13B) 本地化部署 (国内云服务器、GPU单卡16GB、中文模型、WEB页面TextUI、简单入门)

    中文大语言模型 Llama-2 7B(或13B) 本地化部署 (国内云服务器、GPU单卡16GB、中文模型、WEB页面TextUI、简单入门)

            本文目的是让大家先熟悉模型的部署,简单入门;所以只需要很小的算力,单台服务器 单GPU显卡(显存不低于12GB),操作系统需要安装 Ubuntu 18.04。         准备一台服务器 单张英伟达GPU显卡(显存不低于12GB),操作系统需要安装 Ubuntu 18.04 (具体安装过程忽略)

    2024年02月08日
    浏览(11)
  • 无需GPU无需网络“本地部署chatGPT”(更新中文模型)

    无需GPU无需网络“本地部署chatGPT”(更新中文模型)

    想当初图像生成从DELL到stable diffusion再到苹果的移动部署过了两三年吧 聊天bot才发展几个月就可以边缘部署了,如果苹果更新silicon,npu和运存翻倍,争取apple watch也能本地内置,最快ios18 mac、ipad、iPhone能内置吧 又是一个平民百姓都高兴的开源项目,chatGPT这种级别的模型甚至

    2023年04月13日
    浏览(8)
  • 本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

    本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

    OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络

    2024年01月22日
    浏览(9)
  • 手把手教你本地CPU环境部署清华大模型ChatGLM-6B,利用量化模型,本地即可开始智能聊天,达到ChatGPT的80%

    手把手教你本地CPU环境部署清华大模型ChatGLM-6B,利用量化模型,本地即可开始智能聊天,达到ChatGPT的80%

    大家好,我是微学AI,今天教你们本地CPU环境部署清华大ChatGLM-6B模型,利用量化模型,每个人都能跑动大模型。ChatGLM-6B是一款出色的中英双语对话模型,拥有超过62亿个参数,可高效地处理日常对话场景。与GLM-130B模型相比,ChatGLM-6B在对话场景处理能力方面表现更加卓越。此

    2024年02月01日
    浏览(6)
  • 笔记本电脑部署本地离线版类似ChatGPT3.5的AI模型(CPU+内存运行)

    笔记本电脑部署本地离线版类似ChatGPT3.5的AI模型(CPU+内存运行)

    如果通过GPU来运行,一般办公电脑的显卡可能达不到所需的要求,所以,可以通过CPU+内存的方式花最低的代价来部署一套本地运行AI的模型。 1、首先下载CPU-Z,运行看一下电脑当前的指令集是否包含AVX512,非AVX512指令部署完应该也能运行,但可能运行速度会非常慢。(我的电

    2024年02月04日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包