初识OFDM(六):从零开始的OFDM误码率仿真

这篇具有很好参考价值的文章主要介绍了初识OFDM(六):从零开始的OFDM误码率仿真。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

初识OFDM(六):从零开始的OFDM误码率仿真

零.代码地址

https://github.com/liu-zongxi/OFDM_simulation

代码参考了https://zhuanlan.zhihu.com/p/385096476陈老湿的仿真,但各个函数我都有重新实现,希望写的更规范一些

一. 加性高斯白噪声对OFDM误码率的影响

1. 代码展示

该部分代码来自工程的OFDM_awgn.m

整个OFDM经历

生成一帧 → \rightarrow 串并转换 → \rightarrow 调制 → \rightarrow ifftshift → \rightarrow ifft → \rightarrow 添加CP → \rightarrow 并串转换 → \rightarrow 计算能量,信噪比,添加AWGN → \rightarrow 接收端串并转换 → \rightarrow 去CP → \rightarrow FFT → \rightarrow FFTshift → \rightarrow 解调 → \rightarrow 并串转换

%-----------------------仿真OFDM---------------------------%
%-----------------------author:lzx-------------------------%
%% 设置参数
clear;clc;
Nk = 128;           % 子载波个数
Nfft = 128;          % fft长度
Nframe = 6;         % 一帧中有几个OFDM符号
M = 2;              % 调制符号所含比特
SR = 250000;        % 符号速率
BR = SR .* M;       % 比特率
NGI = 32;           % 保护间隔长度
EbN0s = 3:1:10;      % 信噪比
Nsym = Nfft+NGI;    % 系统长度
bers = zeros(1,length(EbN0s));
fprintf('EbN0 \t \t ber\t\t\t per\t\t\t nloop \t\t \n');
%% 函数主体

for kk = 1:length(EbN0s)
    % rng('default')          % 初始化随机种子
    EbN0 = EbN0s(kk);
    nloop = 10000;          % 发送多少帧
    n_biterror = 0;         % 错误的数据
    n_bitdata = 0;          % 一共发送了多少数据
    n_packeterror = 0;      % 有多少错误帧
    n_packetdata = 0;       % 发送了多少帧
    for ii = 1:nloop
        % 生成一帧数据,串并转换,并QPSK,生成一帧
        frame_FDserial = rand(1,Nk*Nframe*M) > 0.5;     % 发送的是bit
        frame_FDparallel = reshape(frame_FDserial,Nk,Nframe*M);% 串并转换
        frame_mod = QPSKMod(frame_FDparallel,Nk,Nframe);     %调制
        % IFFT
        power_FT = sum(sum(abs(frame_mod).^2))/Nk/Nframe;  % 计算下IFFT前的能量,FT表示频域
        frame_mod_shift = ifftshift(frame_mod);         % 频域归零
        frame_ifft = ifft(frame_mod_shift, Nfft);             % ifft
        power_TD = sum(sum(abs(frame_ifft).^2))/Nk/Nframe; % 计算下IFFT前的能量,DT表示时域
        % 添加保护间隔
        frame_withGI = AddGI(frame_ifft, Nfft, NGI, Nframe, "CP");  % 添加保护间隔
        % 并串转换
        frame_TDserial = reshape(frame_withGI,1,Nsym*Nframe);
        x=1:1:160;
        % hold on;
        % plot(x, frame_TDserial(1:160),'b');
        % Channel
        power_TDserial = sum(abs(frame_TDserial).^2)/Nsym/Nframe;   
        EsN0 = EbN0 + 10*log10(M);                                  % 根据信噪比计算噪声能量,幅值,然后加在信号上
        N0 = power_TDserial .* 10.^(-EsN0/10);
        noise_msg = sqrt(N0 / 2) .* (randn(size(frame_TDserial)) + 1j * randn(size(frame_TDserial)));
        frame_recieved = frame_TDserial + noise_msg;
%         attn = sqrt(0.5*power_TDserial*SR/BR*10.^(-EbN0/10));
%         noise_msg = attn .* (randn(size(frame_TDserial)) + 1j * randn(size(frame_TDserial)));
%         frame_recieved = frame_TDserial + noise_msg;
        % plot(x, noise_msg(1:160),'r');
        % hold off;
        % 接收端,串并转换
        frame_recieved_parallel = reshape(frame_recieved,Nsym,Nframe);
        % 去GI
        frame_noGI = RemoveGI(frame_recieved_parallel, Nfft, NGI);
        % FFT
        frame_recieved_FD_shift = fft(frame_noGI, Nfft);
        frame_recieved_FD = fftshift(frame_recieved_FD_shift);
        % QPSK解调
        frame_demod = QPSKDemod(frame_recieved_FD, Nk, Nframe);
        % 并串转换
        frame_output = reshape(frame_demod, 1, Nk*Nframe*M);
       
        % 计算error
        n_biterror_tmp = sum(abs(frame_output-frame_FDserial));
        n_bitdata_tmp = length(frame_FDserial);
        n_biterror = n_biterror + n_biterror_tmp;
        n_bitdata = n_bitdata + n_bitdata_tmp;
        if n_biterror_tmp ~= 0
            n_packeterror = n_packeterror + 1;
        end
        n_packetdata = n_packetdata + 1;
    end
    % 计算在当前信噪比下的误码率
    per = n_packeterror/n_packetdata;
    ber = n_biterror/n_bitdata;
    bers(kk)=ber;
    fprintf('%f\t%e\t%e\t%d\t\n',EbN0,ber,per,nloop);
end
save("BERofdm.mat",'bers');
%% 画图
% bers = load("BERofdm.mat").bers;
awgn_theory = [0.0228784075610853,0.0125008180407376,0.00595386714777866,0.00238829078093281,0.000772674815378444,0.000190907774075993,3.36272284196176e-05,3.87210821552205e-06];
semilogy(EbN0s,awgn_theory,'-*',EbN0s,bers,'-+');
xlabel('比特信噪比');
ylabel('误码率');
title('不同信噪比下误码率仿真曲线');
legend('理论曲线','实验曲线');

2. 代码分析

这个代码主要有这么几点是值得注意的

fftshift和ifftshift

  1. ifftshift和fftshift到底是什么呢?

简单来说,ifftshift是把矩阵做一个向左的长度为矩阵一半的循环位移,fftshift则是把矩阵做一个向右的长度为矩阵一半的循环位移。

  1. 作用是什么呢?

当做ifft时,我们希望ifft窗对准的是 [ − N k 2 , N k 2 ] [-\frac{Nk}{2},\frac{Nk}{2}] [2Nk,2Nk]这样一段信号,而我们把他放在matlab中进行仿真时,下标则是 [ 1 , N k ] [1,Nk] [1,Nk].因此,这就对应错了啊,因此我们要把前后倒置一下,这才满足理论上的要求。相应的,做完fft后,我们又要把结果恢复到 [ 1 , N k ] [1,Nk] [1,Nk],这样才方便和输入进行对比。

  1. 如何做?

注意是顺序是先做ifftshift再做ifft,而接收端是先fft再做fftshift,原因上面已经说的很清楚啦。

能量和信噪比问题

  1. IFFT和FFT前后的能量变化

想象一下FFT或是IFFT的公式.

IFFT中每一个 x [ n ] x[n] x[n] 是Nk个 1 N k X [ k ] \frac{1}{Nk}X[k] Nk1X[k]组成的,因此能量变为 1 N k 2 × N k = 1 N k \frac{1}{Nk^2}\times Nk=\frac{1}{Nk} Nk21×Nk=Nk1

FFT 中每一个 X [ k ] X[k] X[k]是Nfft个 x [ n ] x[n] x[n]组成的,因此能量变为 N f f t Nfft Nfft

能量是会产生变化的,而噪声是在信道时域中加上的,因此我们信噪比使用了时域的能量来计算。

  1. EsN0和EbN0的关系

https://blog.csdn.net/sinat_38151275/article/details/79869891可以参考这篇文章

总的来说,当经过数字调制后,一个符号包含了Npsk个比特那么
E s N 0 = E b N 0 = 10 l o g 10 ( N p s k ) EsN0=EbN0=10log_{10}(Npsk) EsN0=EbN0=10log10(Npsk)

  1. CP对信噪比的影响?

https://zhuanlan.zhihu.com/p/281601152,陈老湿在这里做了很多探讨,不过我更偏向于将CP不看做冗余

因此我的代码是这样的

        power_TDserial = sum(abs(frame_TDserial).^2)/Nsym/Nframe;

二.瑞利信道对OFDM误码率的影响

1. 代码展示

该部分代码来自工程的OFDM_fading.m

整个OFDM经历

生成一帧 → \rightarrow 串并转换 → \rightarrow 调制 → \rightarrow ifftshift → \rightarrow ifft → \rightarrow 添加CP → \rightarrow 并串转换 → \rightarrow 经历信道衰落,和信道卷积 → \rightarrow 计算能量,信噪比,添加AWGN → \rightarrow 接收端串并转换 → \rightarrow 去CP → \rightarrow FFT → \rightarrow FFTshift → \rightarrow → \rightarrow FFT信道矩阵h → \rightarrow 信道均衡 → \rightarrow 解调 → \rightarrow 并串转换

%-----------------------用TDL仿真多径衰落-------------------%
%-----------------------author:lzx-------------------------%
%-----------------------date:2022年3月25日-----------------%
%% 设置参数
clear;clc;
Nk = 128;           % 子载波个数
Nfft = 128;          % fft长度
Nframe = 6;         % 一帧中有几个OFDM符号
Npsk = 2;              % 调制符号所含比特
M = 2^Npsk;          % 调制数
SR = 250000;        % 符号速率
BR = SR .* Npsk;       % 比特率
NGI = 32;           % 保护间隔长度
EbN0s = 0:2:20;      % 信噪比
Nsym = Nfft+NGI;    % 系统长度
bers = zeros(1,length(EbN0s));  % 误码率储存数组
PowerTDL_dB = [0 -8 -17 -21 -25];   % TDL中信道抽头的功率,dB为单位
Delay = [0 3 5 6 8];                % TDL中信道时延
PowerTDL = 10.^(PowerTDL_dB/10);    % TDL中信道抽头的功率
Nchannel=length(PowerTDL_dB);       % 信道抽头数
Tau_maxTDL = Delay(end)+1;          % 最大时延除以帧长,就是归一化的最大时延
fprintf('EbN0 \t \t ber\t\t\t per\t\t\t nloop \t\t \n');
%% 函数主体

for kk = 1:length(EbN0s)
    % rng('default')          % 初始化随机种子
    EbN0 = EbN0s(kk);
    nloop = 10000;          % 发送多少帧
    n_biterror = 0;         % 错误的数据
    n_bitdata = 0;          % 一共发送了多少数据
    n_packeterror = 0;      % 有多少错误帧
    n_packetdata = 0;       % 发送了多少帧
    for ii = 1:nloop
%--------------------------发射端-------------------------------%
        % 生成一帧数据,串并转换,并QPSK,生成一帧
        frame_FDserial = rand(1,Nk*Nframe*Npsk) > 0.5;     % 发送的是bit
        frame_FDparallel = reshape(frame_FDserial,Nk,Nframe*Npsk);% 串并转换
        frame_mod = QPSKMod(frame_FDparallel,Nk,Nframe);     %调制
        % IFFT
        power_FT = sum(sum(abs(frame_mod).^2))/Nk/Nframe;  % 计算下IFFT前的能量,FT表示频域
        frame_mod_shift = ifftshift(frame_mod);         % 频域归零
        frame_ifft = ifft(frame_mod_shift, Nfft);             % ifft
        % frame_ifft = ifft(frame_mod, Nfft);
        power_TD = sum(sum(abs(frame_ifft).^2))/Nk/Nframe; % 计算下IFFT前的能量,DT表示时域
        % 添加保护间隔
        frame_withGI = AddGI(frame_ifft, Nfft, NGI, Nframe, "CP");  % 添加保护间隔
        % 并串转换
        frame_TDserial = reshape(frame_withGI,1,Nsym*Nframe);
            % x=1:1:160;
            % hold on;
            % plot(x, frame_TDserial(1:160),'b');
%--------------------------Channel-------------------------------%
        % 信号先经历衰落
        channel = Rayleigh_model(Nchannel, PowerTDL);
        h = zeros(1, Tau_maxTDL);
        h(Delay+1) = channel;
        frame_conv = conv(frame_TDserial, h);
        frame_fading = frame_conv(:,1:length(frame_TDserial));        % 看似是线性卷积,实际上由于CP变成了循环卷积
        % 添加高斯白噪声
        power_TDserial = sum(abs(frame_TDserial).^2)/Nk/Nframe;     % 计算出的能量和理论不符啊,没发现问题在哪
        EsN0 = EbN0 + 10*log10(Npsk);                                  % 根据信噪比计算噪声能量,幅值,然后加在信号上
        N0 = power_TDserial .* 10.^(-EsN0/10);
        noise_msg = sqrt(N0 / 2) .* (randn(size(frame_TDserial)) + 1j * randn(size(frame_TDserial)));
        frame_recieved = frame_fading + noise_msg;
        % 陈老湿方法添加高斯白噪声,本质上是一样的
%       attn = sqrt(0.5*power_TDserial*SR/BR*10.^(-EbN0/10));
%       noise_msg = attn .* (randn(size(frame_TDserial)) + 1j * randn(size(frame_TDserial)));
%       frame_recieved = frame_TDserial + noise_msg;
            % plot(x, noise_msg(1:160),'r');
            % hold off;
%--------------------------接收端-------------------------------%
        % 接收端,串并转换
        frame_recieved_parallel = reshape(frame_recieved,Nsym,Nframe);
        % 去GI
        frame_noGI = RemoveGI(frame_recieved_parallel, Nfft, NGI);
        % FFT
        frame_recieved_FD_shift = fft(frame_noGI, Nfft);
        frame_recieved_FD = fftshift(frame_recieved_FD_shift);
        % frame_recieved_FD = fft(frame_noGI, Nfft);
        % 信道均衡
        H = fftshift(fft([h zeros(1, Nfft-Tau_maxTDL)].', Nfft));
        frame_equalization = frame_recieved_FD ./ repmat(H, 1, Nframe);
        % QPSK解调
 
        frame_demod = QPSKDemod(frame_equalization, Nk, Nframe);
        % 并串转换
        frame_output = reshape(frame_demod, 1, Nk*Nframe*Npsk);
       
        % 计算error
        n_biterror_tmp = sum(abs(frame_output-frame_FDserial));
        n_bitdata_tmp = length(frame_FDserial);
        n_biterror = n_biterror + n_biterror_tmp;
        n_bitdata = n_bitdata + n_bitdata_tmp;
        if n_biterror_tmp ~= 0
            n_packeterror = n_packeterror + 1;
        end
        n_packetdata = n_packetdata + 1;
    end
    % 计算在当前信噪比下的误码率
    per = n_packeterror/n_packetdata;
    ber = n_biterror/n_bitdata;
    bers(kk)=ber;
    fprintf('%f\t%e\t%e\t%d\t\n',EbN0,ber,per,nloop);
end
save("BERofdm_rayleigh.mat",'bers');
%% 画图
% bers = load(!"BERofdm_rayleigh.mat").bers;
rayleigh_theory = 0.5.*(1-(1-(1./(10.^(EbN0s./10).*(48/80)+1))).^0.5);
semilogy(EbN0s,rayleigh_theory,'-*',EbN0s,bers,'-+');
xlabel('比特信噪比');
ylabel('误码率');
title('不同信噪比下误码率仿真曲线');
legend('理论曲线','实验曲线');

2. 代码分析

我们把信道卷积的代码拿出来看一下

PowerTDL_dB = [0 -8 -17 -21 -25];   % TDL中信道抽头的功率,dB为单位
Delay = [0 3 5 6 8];                % TDL中信道时延
PowerTDL = 10.^(PowerTDL_dB/10);    % TDL中信道抽头的功率
Nchannel=length(PowerTDL_dB);       % 信道抽头数
Tau_maxTDL = Delay(end)+1;          % 最大时延除以帧长,就是归一化的最大时延


% 信号先经历衰落
channel = Rayleigh_model(Nchannel, PowerTDL);
h = zeros(1, Tau_maxTDL);
h(Delay+1) = channel;
frame_conv = conv(frame_TDserial, h);
frame_fading = frame_conv(:,1:length(frame_TDserial));        % 看似是线性卷积,实际上由于CP变成了循环卷积

% 信道均衡
H = fftshift(fft([h zeros(1, Nfft-Tau_maxTDL)].', Nfft));
frame_equalization = frame_recieved_FD ./ repmat(H, 1, Nframe);

这里其实就涵盖了所有第二个仿真和第一个仿真的区别了,这个代码主要有这么几点是值得注意的

瑞利衰落信道是如何通过TDL模型仿真而成的

TDL模型里只包含两个内容,第一个是信道对功率的变化,这是用瑞利分布乘以功率来完成的。第二个是时延, 这是用信道的长度和线性卷积来完成的。我们看到代码中有一项Tau_maxTDL = Delay(end)+1; 这一般被称作信道长度。就是最大时延在TDL这个单位时延下的长度嘛。这样就能理解TDL是如何表达瑞利信道的了。

线性卷积,循环卷积和均衡

我们知道,在FFT中,循环卷积才是真正的卷积,各种性质都是在循环卷积中证明完成的,这其中当然包括大名鼎鼎的时域的卷积等于频域的点乘,也就是说,时域的循环卷积核频域的点乘结果是相同的。可是信道和信号在时域发生的实际上是线性卷积,这就给我们均衡的时候制造困难了,没有简便的算法啊!

我们在DSP课程中学过用循环卷积去计算线性卷积,方法就是把循环卷积的L扩展到M+N-1时候计算。那么有没有方法可以把线性卷积转化为循环卷积呢?当然有!这就是CP

具体原理可以看https://blog.51cto.com/u_15127585/2669966

这是非常巧妙的

初识OFDM(六):从零开始的OFDM误码率仿真

初识OFDM(六):从零开始的OFDM误码率仿真

初识OFDM(六):从零开始的OFDM误码率仿真

也就是说CP有两个作用

  1. 在两个符号之间填充一点东西,这样可以消除掉ISI,当然这个作用用ZP就可以完成
  2. 实现循环卷积,大大的简化了信道的均衡
  3. 还有一个就是估计STO和CFO,这可以在前面的文章看到

线性卷积输入和输出长度怎么不相等了?

https://tieba.baidu.com/p/5402720283?red_tag=0784237449

这居然也被我查到了初识OFDM(六):从零开始的OFDM误码率仿真

这正是TDL想要的效果,我们多出来的实际上就是TDL产生的最大时延/ T s T_s Ts文章来源地址https://www.toymoban.com/news/detail-422122.html

三. 一些还没有思考清楚的问题

  1. 虚拟子载波放置在什么位置?他和ifftshift的关系是什么?
  2. 使用ZP时如何解决信道均衡的问题?如何将线性卷积转化为循环卷积?
  3. 误码率的误差来自哪里?

到了这里,关于初识OFDM(六):从零开始的OFDM误码率仿真的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包