XGBoost详解(原理篇)

这篇具有很好参考价值的文章主要介绍了XGBoost详解(原理篇)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。

目录

一、XGBoost简介

二、XGBoost原理

1、基本组成元素

2、整体思路

(1)训练过程——构建XGBoost模型       

(2)测试过程

3、目标函数

(1)最初的目标函数

(2)推导

4、从目标函数到特征划分准则 + 叶子节点的值的确定

(1) ​编辑 的定义

(2)引入真实的​编辑和正则化项代换

(3)求出 ​编辑 —— 定下该叶子结点的值

(4)目标函数的最优解——与信息增益的连接

(5)特征划分准则——“信息增益”

5、从目标函数到加权分位法(实现对每个特征具体的划分)

(1)引入原因

(2)“特征值重要性”的提出

(3)目标函数到平方损失

(4)特征值重要性排序函数

 (5)切分点寻找

(6)计算分裂点的策略

三、XGBoost对缺失值的处理

四、XGBoost的优缺点

1、优点

(1)精度高

(2)灵活性强

(3)防止过拟合

(4)缺失值处理

(5)并行化操作

2、缺点


一、XGBoost简介

XGBoost全称为eXtreme Gradient Boosting,即极致梯度提升树。

XGBoost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器(个体学习器间存在强依赖关系,必须串行生成的序列化方法)。

Note:关于Boosting算法详见博文集成学习详解_tt丫的博客-CSDN博客

XGBoost是一种提升树模型,即它将许多树模型集成在一起,形成一个很强的分类器。其中所用到的树模型则是CART回归树模型。

Note:CART回归树模型详见博文决策树详解_tt丫的博客-CSDN博客


二、XGBoost原理

1、基本组成元素

       XGBoost的基本组成元素是:决策树。

       这些决策树即为“弱学习器”,它们共同组成了XGBoost;

       并且这些组成XGBoost的决策树之间是有先后顺序的:后一棵决策树的生成会考虑前一棵决策树的预测结果,即将前一棵决策树的偏差考虑在内,使得先前决策树做错的训练样本在后续受到更多的关注,然后基于调整后的样本分布来训练下一棵决策树。

2、整体思路

(1)训练过程——构建XGBoost模型       

       从目标函数出发,可以推导出“每个叶子节点应该赋予的权值”,”分裂节点后的信息增益“,以及”特征值重要性排序函数“。

       与之前决策树的建立方法类似。当前决策树的建立首先根据贪心算法进行划分,通过计算目标函数增益(及上面所说的”分裂节点后的信息增益“),选择该结点使用哪个特征。

       选择好哪个特征后,就要确定分左右子树的条件了(比如选择特征A,条件是A<7):为了提高算法效率(不用一个一个特征值去试),使用“加权分位法”,计算分裂点(这里由”特征值重要性排序函数“得出分裂点)。

      并且对应叶子节点的权值就由上述的“每个叶子节点应该赋予的权值”给出。

      不断进行上述算法,直至所有特征都被使用或者已经达到限定的层数,则完整的决策树构建完成。

(2)测试过程

      将输入的特征,依次输入进XGBoost的每棵决策树。每棵决策树的相应节点都有对应的预测权值w,将“在每一棵决策树中的预测权值”全部相加,即得到最后预测结果,看谁大,谁大谁是最后的预测结果。

3、目标函数

(1)最初的目标函数

设定第 t 个决策树的目标函数公式如下:

XGBoost详解(原理篇)

符号定义:

n表示样本数目;

 表示与有关的损失函数,这个损失函数是可以根据需要自己定义的;

 表示样本 i 的实际值;

 表示前 t 棵决策树一起对样本 i 的预测值;

 表示第t棵树的模型复杂度,这里是正则化项,为了惩罚更复杂的模型(通过减小树的深度和单个叶子节点的权重值),减缓过拟合。

XGBoost详解(原理篇)

T为当前子树的深度,w为叶子节点的节点值。

(2)推导

A、根据Boosting的原理简化

根据Boosting的原理:第 t 棵树对样本 i 的预测值=前 t-1 棵预测树的预测值 + 第 t 棵树的预测值

即:XGBoost详解(原理篇)

这里补充一下:Shrinkage(收缩过程):

       Shrinkage即:每次走一小步逐渐逼近结果的效果,要比每次迈一大步很快逼近结果的方式更容易避免过拟合。就是说它不完全信任每一个棵残差树(达到防止过拟合的效果),它认为每棵树只学到了真理的一小部分,累加的时候只累加一小部分,通过多学几棵树弥补不足。即给每棵数的输出结果乘上一个步长η (收缩率),如下公式所示:

XGBoost详解(原理篇)

后续的公式推导都默认 η = 1。

那么最初的目标函数就可以化为:XGBoost详解(原理篇)

符号定义:

 表示第 t 棵决策树对样本 i 的预测值

B、根据二阶泰勒展开

分析:

我们知道,二阶泰勒展开公式:XGBoost详解(原理篇)

将上面的 XGBoost详解(原理篇) 当成 XGBoost详解(原理篇),即把  当作 x ,把 当作 。

这样一来,XGBoost详解(原理篇) 就是啦。

那么就有:

XGBoost详解(原理篇)

其中:

 ——表示一阶导数,是可以求出来的已知数

 ——表示二阶导数,是可以求出来的已知数

C、去掉常数项

因为我们的目的是要最小化目标函数,那些常数项我们可以把它们暂时搁置。

XGBoost详解(原理篇)

4、从目标函数到特征划分准则 + 叶子节点的值的确定

(1)  的定义

XGBoost把  定义为

其中代表了样本 i 在哪个叶子节点上,w表示叶子结点的权重(即决策树的预测值)

(2)引入真实的和正则化项代换

XGBoost详解(原理篇)

进一步化为:XGBoost详解(原理篇)

其中:

 代表决策树 q 在叶子节点 j 上的取值(即表示位于第j个叶子结点有哪些样本)

这样就把累加项从样本总数变为了针对当前决策树的叶子节点。

再令 和 ,

再次化简为:

XGBoost详解(原理篇)

(3)求出  —— 定下该叶子结点的值

因为我们的目的是最小化目标函数,因此我们对上式求导,令其为0。

XGBoost详解(原理篇)

即我们应该将叶子结点的值设为XGBoost详解(原理篇)

(4)目标函数的最优解——与信息增益的连接

XGBoost详解(原理篇)

这个又叫结构分数,类似于信息增益,可以对树的结构进行打分。

信息增益:更能确定多少——目标函数:预测对了多少

(5)特征划分准则——“信息增益”

XGBoost详解(原理篇)

其中 L 下标是值划分到左子树时的目标函数最优值,R 下标是值划分到右子树时的目标函数最优值。在实际划分时,XGBoost会基于“Gain最大”的节点进行划分。

       第一部分是新的左子叶的分数(即该节点进行特征分裂后左子叶的目标函数);第二部分是新的右子叶的分数(即该节点进行特征分裂后右子叶的目标函数);第三部分是原来叶子的分数(即该节点未进行特征分裂前的目标函数);第四部分是新增叶子的正则系数。

      体现的意义即为:判断分裂节点后的信息增益(第一部分+第二部分)是否大于未分裂的情况,并且考虑到模型会不会太复杂的问题(如果增加的分数小于正则项,节点不再分裂)。

5、从目标函数到加权分位法(实现对每个特征具体的划分)

(1)引入原因

       比如说,有一个特征A是一个离散的连续变量,有100个不同的值,范围是[1,100]。那么如果选择特征D来分裂节点时,需要尝试100种不同的划分,一个一个算然后再对比Gain,可以是可以,但会导致算法的效率很低。

      XGBoost为了实现可以不用尝试每一种的划分,只选取几个值进行尝试,提出了加权分位法。

(2)“特征值重要性”的提出

       为了得到值得进行尝试的划分点,我们需要建立一个函数对该特征的特征值进行"重要性"排序。根据排序的结果,再选出值得进行尝试的特征值。

(3)目标函数到平方损失

我们前面得到的目标函数长这样:

XGBoost详解(原理篇)

我们把 提出来,变成:

XGBoost详解(原理篇)

然后因为  和  都是已知数,相当于常量,我们给他加上它们的相关运算,在后面再给他减掉一个常数,结果不变。

XGBoost详解(原理篇)

C为常数项

现在我们得到的式子即为:真实值为 ,权重为的平方损失项+正则化项+常数项

(4)特征值重要性排序函数

       因此,我们可以得出结论:一个样本对于目标函数值的贡献,在于其  。因此可以根据  对特征值的“重要性”进行排序。XGBoost提出了一个新的函数,这个函数用于表示一个特征值的"重要性"排名:(这里的特征值表示:某个等待判断分裂的节点属性,中的某个取值)

XGBoost详解(原理篇)

 其中:

:第k个特征的每个样本的特征值()与其相应的  组成的集合;

:表示第 i 个样本对于第k个特征的特征值,和其对应的  ;


的分母:第k个特征的所有样本的  的总和;
的分子:所有特征值小于z的样本的  总和;

式子表示的意义是:特征值小于z的样本特征重要性分布占比

 (5)切分点寻找

       之后对一个特征的所有特征值进行排序。在排序之后,设置一个值 ϵ (采样频率)。这个值用于对要划分的点进行规范。对于特征k的特征值的划分点有,两个相连划分点的值之差的绝对值要小于 ϵ (为了让相邻的划分点的贡献度都差不多)。同时,为了增大算法的效率,也可以选择每个切分点包含的特征值数量尽可能多。

XGBoost详解(原理篇)

(6)计算分裂点的策略

基于加权分位法,我们有两种策略进行分裂点的计算:全局策略和局部策略。

A、全局策略

       即在一棵树的生成之前,就已经计算好每个特征的分裂点。在整个树的生成过程当中,用的都是一开始计算的分裂点。这也就代表了使用全局策略的开销更低,但如果分裂点不够多的话,准确率是不够高的。

B、局部策略

       根据每一个节点所包含的样本,重新计算其所有特征的分裂点(即边建立树边重新更新分裂点)。

       因为在一棵树的分裂的时候,样本会逐渐被划分到不同的结点中(即每个结点所包含的样本,以及这些样本有的特征值是不一样的)。因此,我们可以对每个结点重新计算分裂点,以保证准确性,但这样会使局部策略的开销更大,但分裂点数目不用太多,也能够达到一定的准确率。

(1)在分裂点数目相同,即 ϵ 相同的时候,全局策略的效果比局部策略的效果差;

(2)全局策略可以通过增加分裂点数目,达到逼近局部策略的效果


三、XGBoost对缺失值的处理

       对于特征A,我们首先将样本中特征A的特征值为缺失值的样本全部剔除。然后我们正常进行样本划分。

       最后,我们做两个假设:一个是缺失值全部归在左子节点;一个是归在右子节点。哪一个得到的增益大,就代表这个特征最好的划分。

Note:对于加权分位法中对于特征值的排序,缺失值不参与(即缺失值不会作为分裂点,gblinear将缺失值视为0)


四、XGBoost的优缺点

1、优点

(1)精度高

XGBoost对损失函数进行了二阶泰勒展开, 一方面为了增加精度, 另一方面也为了能够自定义损失函数,二阶泰勒展开可以近似许多损失函数。(对比只用到一阶泰勒的GBDT)


(2)灵活性强

XGBoost不仅支持CART,还支持线性分类器;

XGBoost还支持自定义损失函数,只要损失函数有一二阶导数。

(3)防止过拟合

A、正则化

       XGBoost在目标函数中加入了正则项,用于惩罚过大的模型复杂度,有助于降低模型方差,防止过拟合。
B、Shrinkage(缩减)

       主要是为了削弱每棵树的影响,让后面有更大的学习空间,学习过程更加的平缓。

C、列抽样

      在建立决策树的时候,不用再遍历所有的特征了,可以进行抽样。

      一方面简化了计算,另一方面也有助于降低过拟合。


(4)缺失值处理

(5)并行化操作

有一些不相关可以很好的支持并行计算

2、缺点

时间复杂度和空间复杂度都较高(预排序过程)。


欢迎大家在评论区批评指正,谢谢~文章来源地址https://www.toymoban.com/news/detail-422727.html

到了这里,关于XGBoost详解(原理篇)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 花了3周理解的xgboost算法原理

    先学决策树,再学随机森林,最后才来到xgboost。本以为如此平滑地过渡过来,会容易一些,没想到还是这么艰难。零零散散花了3周多的时间,看了好多文章的解释和阐述,才勉强get到xgboost的算法原理。 这其中,有两个参考来源,我个人比较推荐:一个是文字,一个是视频。

    2024年02月11日
    浏览(41)
  • XGBoost的简单安装及入门使用

    XGBoost支持多种操作系统,如Windows, Linux, MacOS等,并支持多种语言版本,如Python, R, Scale, Java等。XGBoost的安装方式一般有两种,一种是直接通过pip安装(适合用于Python),另外一种是通过源码编译安装 1、通过pip安装 通过pip安装Python包既简单又方便,只需执行如下的命令: 使

    2024年02月02日
    浏览(15)
  • XGBoost模型详解

      GBDT,它是一种基于boosting增强策略的加法模型,训练的时候采用前向分布算法进行贪婪的学习,每次迭代都学习一棵CART树来拟合之前 t − 1 t-1 t − 1 棵树的预测结果与训练样本真实值的残差。XGBoost对GBDT进行了一系列优化,比如损失函数进行了二阶泰勒展开、目标函数加

    2024年02月08日
    浏览(24)
  • 一文速学-XGBoost模型算法原理以及实现+Python项目实战

    目录 前言 一、XGBoost模型概述 1.发展历史 2.算法改进之处 1.损失函数 2.分裂点选择 3.剪枝策略 4.正则化 5.学习率 6.提前停止 二、XGBoost算法原理 1.初始化构造目标函数  2.目标函数变换  变换优势总结 3.将树引入目标函数 4.构建最优树(贪心算法) 三、XGBoost实战-贷款违约预测模

    2024年02月03日
    浏览(49)
  • 集成学习——Boosting算法:Adaboost、GBDT、XGBOOST和lightGBM的简要原理和区别

    Boosting算法是通过串联的方式,将一组弱学习器提升为强学习器算法。它的工作机制如下: (1)用初始训练集训练出一个基学习器; (2)依据基学习器的表现对训练样本分布进行调整,使得之前做错的训练样本在之后中得到最大的关注; (3)用调整后的样本分布进行下一

    2024年02月16日
    浏览(39)
  • git菜鸟入门级教程

    Git是一个分布式版本控制系统,它可以帮助开发者 管理和追踪 代码的变化。下面是一个保姆级的Git教程,包括 概述、理论、指令、创建及代码初始化 完整步骤、 分支与冲突 以及遇到的问题。 概述 Git是一个开源的分布式版本控制系统,最初由Linus Torvalds开发。它可以追踪代

    2024年02月16日
    浏览(44)
  • Boosting三巨头:XGBoost、LightGBM和CatBoost(发展、原理、区别和联系,附代码和案例)

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由ERNIE-ViLG AI 作画大模型生成) 机器学习中,提高模型精度是研究

    2024年02月02日
    浏览(58)
  • 原理图认识之Arduino(入门学习笔记)

    这是一张简单的Arduino开发板原理图,红色圈起来的代表实际连接在一起,为避免用线连接起来,在图中用同样名称的5v0连接。       AMS1117-5.0是一种线性稳压器,其工作原理是将输入电压稳定在5V输出。因此,将12V的输入电压通过AMS1117-5.0可以得到稳定的5V输出电压。 XC6206P

    2024年02月03日
    浏览(35)
  • 菜鸟教程笔记:TypeScript

    1.在ts文件中:Runoob.ts 2.通过tsc命令编译 3.得到js代码:Runoob.js 4.使用node来执行js代码 我们可以同时编译多个ts文件: ts会忽略 空格 , 制表符 , 换行符 理解:对现实世界理解和抽象的方法 面向对象有两个概念:对象和类 对象:类的一个实例,有状态和行为。 类:是一个模板

    2024年02月07日
    浏览(46)
  • STM32—PWM原理及配置(入门详解)

    目录 一、PWM原理 二、stm32 PWM资源 三、输出模式 1.模式1 2.模式2 四、PWM周期与频率 五、PWM占空比 六、PWM配置 七、 main.c代码         PWM,是脉冲宽度调制,它是通过对一系列脉冲的宽度进行调制,等效出所需要的波形(包含形状以及幅值),对模拟信号电平进行数字编码

    2024年02月14日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包