图像配准(匹配)与变化检测

这篇具有很好参考价值的文章主要介绍了图像配准(匹配)与变化检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简介

图像配准(匹配)与变化检测

A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images 2022

变化检测的基本框架

图像配准(匹配)与变化检测

基于神经网络的变化检测特征抽取

图像配准(匹配)与变化检测
图像配准(匹配)与变化检测

变化检测的粒度

图像配准(匹配)与变化检测

场景级的变化检测(SLCD)

然而,像素级或物体级的变化检测方法不适用于土地利用变化分析。造成这种情况的主要原因可能是,场景中的物体,如植被生长和个别建筑的拆除/建造,不会直接影响土地使用类别,即它们在场景中的变化不会改变土地利用类别,例如,从住宅区到工业区。因此,在场景尺度上改进变化检测方法至关重要。

  • SLCD最简单的方法,即后分类方法,将场景变化检测任务视为一个独立的分类,忽略时间相关性信息,从而遭受误差累积。换句话说,它几乎没有考虑多时间图像的时间相关性。
  • 一些研究人员已经开始考虑多时相图像场景之间的时间相关性,开发了深度典型相关分析(DCCA)正则化[149]和一种称为软DCCA[158]的改进方法。
  • 然而,这些只专注于从两个输入中学习相关的特征,并且不能被优化以提高特征表示能力。学习的全连接层可用于对双时间场景之间的相似性进行建模,并提高特征表示的可靠性[159]。
目标级别的变化检测

基于对象的方法以对象而不是像素作为分析单元。对象是一组局部像素簇,其中所有像素都被分配了相同的分类标签。一种基于对象的方法有效地利用了图像中的同质信息,并消除了图像噪声、边界[168]和错位的影响。由于基于对象的方法可能带来的好处,它们在土地覆盖图绘制中很普遍。在各种出版物中,它们取得了比基于像素的方法更好的性能。

边界框候选方法。在该方法中,将变化对象作为对象检测(OD)的目标。通常的OD方法,如SSD[169]、Faster R-CNN[170]和YOLO1-5[171-175],有可能用于变化检测。

该方法以遥感图像中的“变化区域”为检测目标,以“不变区域”为背景。OD方法应用于高分辨率遥感图像变化检测[176]。检测结果是一组正方形区域,然后混合具有特定变化类型的相交区域。特征提取网络可以是单分支网络或双分支网络。对于单分支网络,首先合并或减去多时相图像,然后将结果输入OD网络以确定变化[176]。双分支网络分别生成每个图像的基本特征和代表性特征,然后融合每个分支的特征[177]或建议区域[178],以预测类别得分和差异置信度。此外,基于对象的实例分割,例如使用Mask R-CNN,可以用作检测变化的基础,从而产生初始化的对象实例[179]。事实上,获取对象的位置是确定更改对象的位置的第一步。

Deep Learning-Based Change Detection in Remote Sensing Images: A Review 2022

基于像素的变化检测与基于对象的变化检测

传统的CD方法可以根据分析单元分为两组:基于像素的CD(PBCD)和基于对象的CD(OBCD)。

  • PBCD是一种传统的方法,通过比较像素来识别变化,因此,它无法克服各种日期或传感器之间的辐射变化和配准错误的限制。由于图像对象之间的可变性增加,PBCD方法通常适用于中低分辨率遥感图像,但在VHR图像中经常无法操作。
  • OBCD解决了这些问题,并显著提高了CD的准确性。针对VHR图像CD,提出了基于OBCD的技术,将图像分割为不相交和同质的对象,然后对双时态对象进行比较和分析。

变化检测基本处理流程

图像配准(匹配)与变化检测

无监督变化检测

基于人工智能的变化检测框架通常包括特征提取器或分类器,这需要有监督和无监督的训练。由于获得大量标记样本进行监督训练通常耗时耗力,因此已经做出了许多努力,以无监督或半监督的方式实现基于人工智能的变化检测。

图像配准

参考文献:

  • 图像配准:从SIFT到深度学习
  • 图像配准综述

基本概念

图像配准就是找到一幅图像像素到另一幅图像像素间的空间映射关系。
这些图像可以是不同时间(多时间配准),不同传感器在不同地方拍摄(多模式配准)。这些图像之间的空间关系可以是刚性(rigid)(平移和旋转),仿射(affine)(例如剪切),单应性(homographies)或复杂的大变形模型(complex large deformations models)。
图像配准(匹配)与变化检测

图像配准所属现代词,指的是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程。
配准技术的流程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数:最后由坐标变换参数进行图像配准。其中特征点提取是关键。

几个容易混淆的概念:

  • 配准,是寻找相似图像但是变形后的图像(需要做一些旋转之类的校正变换)。通常是将两幅尺寸相当的图像映射到同一个坐标系中,并通过变换映射使它们的特征对应。
  • 匹配,是寻找与一幅图相似的图像(不对寻找到的图像做矫正)。通常是在大图像中寻找与小图像(模板)相似的区域。(图像匹配是通过对影像内容、特征、结构、关系、纹理及灰度等的对应关系,相似性和一致性分析,寻求相同影像目标的方法。)
    武汉大学和上海交通大学近日联合发布了首篇图像匹配大领域综述:《Image Matching from Handcrafted to Deep Features: A Survey 2020》
  • 融合,两幅图像配准后,就可以叠加,称为简单的图像融合。也可以是多幅图像连接成一幅大图。

图像配准分类

图像配准(匹配)与变化检测

图像配准(匹配)与变化检测

传统的基于特征的图像匹配

自21世纪初以来,图像配准主要使用基于特征的方法。这些方法有三个步骤:关键点检测和特征描述,特征匹配,图像变换。简单的说,我们选择两个图像中的感兴趣点,将参考图像(reference image)与感测图像(sensed image)中的等价感兴趣点进行关联,然后变换感测图像使两个图像对齐。
图像配准(匹配)与变化检测

  • 关键点检测和特征描述
    关键点就是感兴趣点,它表示图像中重要或独特的内容(边角,边缘等)。每个关键点由描述符表示,关键点基本特征的特征向量。描述符应该对图像变换(定位,缩放,亮度等)具有鲁棒性。

  • 特征匹配
    一旦在一对图像中识别出关键点,我们就需要将两个图像中对应的关键点进行关联或“匹配”。其中一种方法是BFMatcher.knnMatch()。这个方法计算每对关键点之间的描述符的距离,并返回每个关键点的k个最佳匹配中的最小距离。

  • 图像变换
    在匹配至少四对关键点之后,我们就可以将一个图像转换为另一个图像,称为图像变换^12(image warping)。空间中相同平面的两个图像通过单应性变换^13(Homographies)进行关联。Homographies是具有8个自由参数的几何变换,由3x3矩阵表示图像的整体变换(与局部变换相反)。因此,为了获得变换后的感测图像,需要计算Homographies矩阵。
    为了得到最佳的变换,我们需要使用RANSAC算法检测异常值并去除。它内置在OpenCV的findHomography方法中。

图像配准的相关资源

image-registration-resources(图像配准相关的书籍、论文、源码、工具、竞赛)

A Toolbox for Image Feature Matching and Evaluations(In this repository, we provide easy interfaces for several exisiting SotA methods to match image feature correspondences between image pairs. )

voxelmorph: Learning-Based Image Registration (voxelmorph is a general purpose library for learning-based tools for alignment/registration, and more generally modelling with deformations.)

综述:A review of multimodal image matching: Methods and applications

参考资料

综合型参考资料

awesome-remote-sensing-change-detection(数据集、源码、竞赛)
Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges(综述论文的github链接,有截止2021年的大量相关论文、源码、数据集)

源码

  • Python library with Neural Networks for Change Detection based on PyTorch
    该库在gitcode上的映射
    该库的blog:Github复现之遥感影像变化检测框架

  • ChangeDetection

  • Change Detection Repository
    In this repository, we provide python implementation of some traditional change detection methods, such as SFA, MAD, some deep learning-based change detection methods, such as SiamCRNN, DSFA, and FCN-based methods, or their original websites. Some multi-temporal datasets are also contained in this repository

综述

  • 技术解析:基于深度学习的遥感影像变化检测

  • 综述1:2018-多时相遥感影像变化检测方法综述(武大)
    ------武汉大学眭海刚教授等:多时相遥感影像变化检测方法综述

  • 综述2:Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges
    收录于:Remote Sens. 2020
    论文地址:Remote Sensing | Free Full-Text | Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges
    解读:
    变化检测综述:Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges_naath的博客-CSDN博客_变化检测发展历程
    Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges(综述论文的github链接,有截止2021年的大量相关论文、源码、数据集)

  • 综述3:Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis
    收录于:IEEE Access,2020

  • 综述4:A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images 2022

  • 综述5:A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images 2022文章来源地址https://www.toymoban.com/news/detail-422772.html

到了这里,关于图像配准(匹配)与变化检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV(图像处理)-基于Python-特征检测-特征点匹配

    图像特征就是指有意义的图像区域,具有独特性,易于识别性,比如角点、斑点以及高密度区。而为什么角点具有重要的特征呢? 看下图: 观察ABD三张图片,我们不容易得知图像的位置,而CEF三张图我们特别容易找到它们在原图中对应的位置,这是因为ABD比较平滑,我们不

    2024年02月03日
    浏览(55)
  • 【课程介绍】OpenCV 基础入门教程:图像读取、显示、保存,图像处理和增强(如滤波、边缘检测、图像变换),特征提取和匹配,目标检测和跟踪

    [ 专栏推荐 ] 😃 《视觉探索: OpenCV 基础入门教程》 😄 ❤️【简介】: Opencv 入门课程适合初学者,旨在介绍 Opencv 库的基础知识和核心功能。课程包括图像读取、显示、保存,图像处理和增强(如滤波、边缘检测、图像变换),特征提取和匹配,目标检测和跟踪等内容。学

    2024年02月16日
    浏览(398)
  • opencv基础49-图像轮廓02-矩特征cv2.moments()->(形状分析、物体检测、图像识别、匹配)

    矩特征(Moments Features)是用于图像分析和模式识别的一种特征表示方法,用来描述图像的形状、几何特征和统计信息。矩特征可以用于识别图像中的对象、检测形状以及进行图像分类等任务。 矩特征通过计算图像像素的高阶矩来提取特征。这些矩可以表示图像的中心、尺度

    2024年02月13日
    浏览(45)
  • opencv案例06-基于opencv图像匹配的消防通道障碍物检测与深度yolo检测的对比

    技术背景 消防通道是指在各种险情发生时,用于消防人员实施营救和被困人员疏散的通道。消防法规定任何单位和个人不得占用、堵塞、封闭消防通道。事实上,由于消防通道通常缺乏管理,导致各种垃圾,物品以及车辆等障碍物常常出现在消防通道中,堵塞消防通道,当险

    2024年02月03日
    浏览(44)
  • opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取)

    OpenCV 提供了模板匹配(Template Matching)的功能,它允许你在图像中寻找特定模板(小图像)在目标图像中的匹配位置。模板匹配在计算机视觉中用于目标检测、图像识别、特征提取等领域。 以下是 OpenCV 中使用模板匹配的基本步骤: 加载图像 : 首先,加载目标图像和要匹配

    2024年02月13日
    浏览(48)
  • 【计算机视觉、关键点检测、特征提取和匹配】基于SIFT、PCA-SIFT和GLOH算法在不同图像之间建立特征对应关系,并实现点匹配算法和图像匹配(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码、数据、文章

    2024年03月14日
    浏览(55)
  • 基于Matlab实现图像配准技术(附上源码+图像)

    图像配准是数字图像处理中的重要技术之一,它的目标是将多幅图像进行准确的对齐,使得它们在空间上保持一致。图像配准在许多领域都有广泛的应用,如医学影像、遥感图像、计算机视觉等。本文将介绍如何使用Matlab实现图像配准技术,并提供一个简单的案例代码。 图像

    2024年02月07日
    浏览(40)
  • OpenCV中的图像配准和图像比对如何实现?

    在OpenCV中,图像配准和图像比对是计算机视觉中重要的任务,用于找到两个图像之间的相似性、对齐两幅图像或寻找图像之间的差异。下面是实现图像配准和图像比对的基本步骤: 图像配准: 图像配准是将两幅图像对齐,使它们在空间中具有相同的位置和角度。常见的图像

    2024年02月07日
    浏览(43)
  • 基于灰度信息的图像配准方法

    文章目录 目录 前言 一、互相关法 二、互信息法 三、误差平方和法 总结        图像配准方法分为三种:基于灰度信息方法、基于变换域方法和基于特征方法。 基于灰度信息方法是直接根据图像或图像块灰度信息进行像素上的对齐,该方法主要思想是直接最小化图像信

    2024年02月07日
    浏览(34)
  • 图像配准:基于 OpenCV 的高效实现

    在这篇文章中,我将对图像配准进行一个简单概述,展示一个最小的 OpenCV 实现,并展示一个可以使配准过程更加高效的简单技巧。 图像配准被定义为将不同成像设备或传感器在不同时间和角度拍摄的两幅或多幅图像,或来自同一场景的两幅或多幅图像叠加起来,以几何方式

    2024年02月16日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包