如何把自有数据接入GPT大模型?

这篇具有很好参考价值的文章主要介绍了如何把自有数据接入GPT大模型?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ChatGPT引发了AI革命,大家都想探究如何让它发挥更大价值。

以它为代表的大模型并未完全掌握所有专业知识,这也正是我们创业的契机。

我们应该思考如何让AI在专业领域中释放更大的价值潜能。
就像开发者挖掘出某个鲜为人知的资源一样,我们可以开发出AI在特定领域的潜力,从而在市场上脱颖而出。

以OpenAI的API为例,让大模型支持自己专业领域的知识,有两种方式:微调模型和封装到Prompt。

如何把自有数据接入GPT大模型?

 

一、微调(Fine-tuning)注入专业领域知识

微调是在基础大模型训练成熟之后,通过Fine-tuning模式,利用标注数据调整模型参数以适应不同任务需求。

传统的微调需要做调整损失函数、增加额外层等工作,但自2018年以来,随着预训练模型的体量不断增大,预训练模型Fine-tune所需的硬件和数据需求也在不断增长。此外,下游任务的丰富多样性使得预训练和微调阶段的设计更为复杂。

如今,像GTP-4这样的模型已经采用了一种新的训练模式,即单向语言模型预训练+zero shot prompt/Instruct,它不需要在预训练后进行任务Fine-tuning,而是通过自然语言指令来解决下游任务,这为模型的优化提供了全新的可能性。

OpenAI在GPT-4上花了6个月的时间才放出来,是为了使其更安全、更一致,而不是新的专业领域知识的注入,新专业领域知识的注入耗时非常短的,也就根据数据量,几分钟到几小时。

从OpenAI的微调文档 https://platform.openai.com/docs/guides/fine-tuning 可以看出,要准备的数据包含prompt(输入文本)和completion(输出文本)两部分:

  • prompt是我们给模型的输入文本,它可以是任何文本,例如一个问题、一个描述、一个开头、一个例子等。prompt的作用是告诉模型我们想要完成什么样的任务,并给出一些上下文或模式。

  • completion是模型根据prompt生成的输出文本,它可以是任何文本,例如一个答案、一个续写、一个列表、一段代码等。completion的作用是尽可能地满足prompt的要求,并保持语义和逻辑的连贯性。

下面是一些数据例子:

{
    "prompt": "对以下商品进行夸赞:彩妆中的口红品类,卖点为颜色是正红色,能提升气色 ->", 
    "completion": " 这口红正红色太好看了,完美提升气色,日常使用特别棒\\n"
}

更多的例子可以看如下链接:

  • GPT-for-E-Commerce/test-v1.1.jsonl at b6dd9d018dce670efd28448dbd0dde0edecb3e42 · Royce17/GPT-for-E-Commerce · GitHub
  • finetune-with-openai/faq.jsonl at 334a69224d7e87a92de09b0d627f616be4ffa43a · A-baoYang/finetune-with-openai · GitHub

要微调的效果好,就要使用更多高质量的示例进行Fine-tuning,我们应该如上面链接例子一样,提供至少几百个高质量的示例,而且最好由专家审查过。

二、在Prompt中带入知识

只需设计恰当的输入,就能让ChatGPT在上下文中生成有价值的答案,而无需修改模型的结构或参数。

输入问题时,还可以引入相关知识,使问题更加全面。这种方法的局限性在于每次输入的长度有限。

下面是一些例子:

例1:作为专业DBA,回答SQL相关问题

这里在输入问题时,引入了我们的数据库表结构这个专业知识。

问:

我要你扮演一个专业DBA。我将提供给你数据表结构以及我的需求,你的目标是告知我性能最优的可执行的SQL语句,并尽可能的向我解释这段SQL语句,如果有更好的优化建议也可以提出来。

我的数据表结构为:

CREATE TABLE `user` (
`id` int NOT NULL AUTO_INCREMENT,
`name` varchar(255) CHARACTER SET  utf8mb4 
      COLLATE utf8mb4_unicode_ci 
      NOT NULL DEFAULT '' 
      COMMENT '名字',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 
      COLLATE=utf8mb4_unicode_ci 
      COMMENT='用户表';

我的需求为:根据用户的名字查询用户的id

回答

好的,根据您提供的数据表结构和需求,可以使用以下SQL语句来查询用户的id:

SELECT id FROM user WHERE name = '用户的名字';

这条SQL语句将会在用户表中查找指定名字的用户,然后返回该用户的id。为了进一步优化查询性能,您可以在name字段上创建索引,这将会使查询更快速地匹配到所需的记录。

您可以使用以下SQL语句来为name字段创建索引:

ALTER TABLE user ADD INDEX name_index (name);

此外,为了保证查询的效率,您需要注意以下几点:

  1. 数据表的数据量过大时,查询的速度可能会变慢。如果您的数据表中包含大量的数据,可以考虑对表进行分区或分表。

  2. 如果您的查询需求经常变化,您可能需要对数据库进行优化。可以通过监控数据库的性能指标,识别哪些查询最耗时,然后对其进行优化。

例2:智能客服

比如我们要做智能客服,有一些客服准则(ChatGPT做智能客服的十条服务准则 ),对于OpenAI的API来说,要注入的知识如下链接:

lanying-connector/openai-xiaolan.json at master · maxim-top/lanying-connector · GitHub

下面代码通过消息对象的数组注入了一些上下文知识。


# Note: you need to be using OpenAI Python v0.27.0 for the code below to work
import openai

openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
        {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
        {"role": "user", "content": "Where was it played?"}
    ]
)

其中

  • 系统消息(system)有助于设置助手的行为。在上面的例子中,prompt被指示“You are a helpful assistant.”。
  • 用户消息(user)有助于指导助手。它们可以由应用程序的最终用户生成,也可以由开发人员设置为指令。在上面的例子中,用户的最后一个问题是“在哪里比赛的?” 就是通过提前设置的对话消息来帮助回答。由于模型没有过去请求的记忆,因此所有相关信息必须通过对话提供。如果对话无法满足模型的token限制,则需要以某种方式缩短。
  • 助理消息(assistant)有助于存储之前的回复。它们也可以由开发人员编写,以帮助提供所需行为的示例。

通过上面的方式就可以完成专业领域知识的注入。

例3:通过外部链接把内容带入

下面只包含我们发起的对话部分,会话结果比较长,省略了:

User : 您是一个金融专家,我会向您发送微软的年度报告,并在我向您发送链接后反馈给我微软10个利好和10个消极因素。你明白吗?
...
User : Microsoft 2022 Annual Report
...
User : 我会把Nvidia最近的财报链接发给你,你能反馈我和上面微软类似的答案吗,你明白吗?
...
User: NVIDIA Announces Financial Results for Fourth Quarter and Fiscal 2023 | NVIDIA Newsroom
...
User: 您能否从Nvidia的报告中提供更多财务见解?
...
User: 我会把戴尔最近的财务报告的链接发给你,你能反馈我和上面微软类似的答案吗,你明白吗?
....

User: 比较微软、英伟达和戴尔,用表格对比下他们的资本支出、运营支出、收入、利润率和利润率百分比。
...
User:预测下戴尔未来12个月的现金流。

这种方式要确保链接可以被GPT访问到,外部链接持续稳定的可访问是必须考虑的问题。

适用场景对比

价格对比

OpenAI的相关报价看: Pricing

对话类:GPT4远远高于GTP3.5。

如何把自有数据接入GPT大模型?

 

目前提供的可微调的这几个模型:Ada、Babbage、Curie、Davinci 均是原始的 GPT-3 基本模型,其中,Davinci 是最强大的模型,成本也最高,而 Curie 又比 Babbage 功能更强大(且成本更高),依此类推,这些名称是相对的。

如何把自有数据接入GPT大模型?

 

GPT3.5 和 GTP4 由于目前没有 fine-tune,所以成本就只有每次问答的成本,但由于大部分时候需要带大量的 prompts,其实隐性的成本是挺高的,我们经常可以看到一个简短的问题会带有上千个字符的 prompts。

而 Davinci 的 fine-tune 模型的训练成本是较高的,但一旦获得专属模型后,后续的聊天中就不再需要做预检索和背景知识的 prompts 了,可以直接进行关于该领域的知识问答。不仅 token 消耗会变小,而且速度也会更快。

所以目前阶段还是用在Prompt中带入知识方案比较合适,后续等对应的微调模型出来后,可以切换过去。

长度问题

ChatGPT的API当前是无状态的,需要自己维护会话状态和保存上下文。这可能会导致请求内容越来越大,带来高昂的费用。

但是,你可以借助OpenAI的embedding模型(https://platform.openai.com/docs/guides/embeddings/what-are-embeddings)和本地数据库,以更智能的方式维护上下文,并且节省成本。

首先,将文本资料准备成易于处理的格式,并且分成小块(这是OpenAI embeddings模型的输入长度限制)。接着,利用程序调用OpenAI embedding的API将这些文本块转换成数字向量,并且将结果保存到本地数据库中。(注意,为了能够反向获得原始文本,需要将原始文本块和数字向量一起存储。)

当需要搜索的时候,将搜索关键字转换成数字向量,并且在本地数据库中进行检索。结果集将根据匹配相似度进行打分,分越高表示越匹配。这样,可以按照匹配度倒序返回相关结果。

聊天场景下,当用户提问后,需要先把提问内容关键字搜索到一个相关结果集(可以本地检索,也可以通过OpenAI embedding接口获得向量后比较相似度)。然后根据拿到的结果集,将结果集加入到请求ChatGPT的prompt中。

比如说用户提了一个问题:

“What's the makers's schedule?”

从数据库中检索到相关的文字段落是:

“What I worked on...”
"Taste for Makers..."

那么最终的prompt看起来就像这样:


[
 {
  role: "system",
  content: "You are a helpful assistant that accurately answers queries using Paul Graham's essays. Use the text provided to form your answer, but avoid copying word-for-word from the essays. Try to use your own words when possible. Keep your answer under 5 sentences. Be accurate, helpful, concise, and clear."
 },
 {
 role: "user",
 content: `Use the following passages to provide an answer
to the query: "What's the makers's schedule?"
1. What I worked on...
2. Taste for Makers...`
 }
]

这样ChatGPT在返回结果的时候,就会加上你的数据集。

具体实现看: GitHub - mckaywrigley/paul-graham-gpt: AI search & chat for all of Paul Graham’s essays.

总结

大模型的可能性真的非常多。想象一下,如果你将自己的思想和博客输入大模型,你可以训练出一个包含自己想法的模型。这个模型可以被定位为模仿人进行交流,最终创造出一个虚拟的你。对于专业领域的KOL(关键意见领袖)来说,这种方法非常有用,因为粉丝可以直接针对他的思想进行提问和交流。

而对于不善写作的人来说,也可以将自己的想法以简单的问答对的形式输出,训练出一个专属机器人,再利用大模型的语言和逻辑能力来撰写包含自己思想的文章。这种方法非常值得尝试。

参考

  • 如何用 ChatGPT 构建你的专属知识问答机器人 如何用 ChatGPT 构建你的专属知识问答机器人 - Frank 的个人博客

  • 搭建基于知识库内容的机器人 搭建基于知识库内容的机器人 | Learning Prompt文章来源地址https://www.toymoban.com/news/detail-422855.html

到了这里,关于如何把自有数据接入GPT大模型?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGPT:引领未来的语言模型革命?

    一、引言 随着人工智能技术的不断发展,Chat GPT作为一种自然语言处理技术,已经逐渐渗透到各个领域,具有广泛的应用前景。本文将从多个角度探讨Chat GPT的应用领域及其未来发展趋势。 ChatGPT的语言处理能力超越了以往任何一款人工智能产品。它能够理解并处理各种语言环

    2024年04月22日
    浏览(39)
  • 2023年人工智能GPT-4时代,最新13个ChatGPT商业市场AIGC应用正在掀起革命性变革!

    ChatGPT是未来商务世界的颠覆者,它的多模态自然语言模型及相关技术将会彻底改变传统商业模式。不同于其他数字化产品,ChatGPT使用最先进的自然语言处理和深度学习技术,能够自动识别并解决大量客户问题。而更为重要的是,ChatGPT商业应用可以为企业节省成本,提高效率

    2024年02月11日
    浏览(90)
  • ChatGPT:人工智能语言模型的革命性进步

    🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《IDEA开发秘籍》学会IDEA常用操作,工作效率翻倍~💐 🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬

    2024年02月16日
    浏览(49)
  • 全网最新版ChatGLM-6B开源模型环境详细部署及安装——如何在低显存单显卡上面安装私有ChatGPT GPT-4大语言模型

    ChatGPT的爆火让许多公司和个人都想要开发自己的大型语言模型,但是,由于算力和语言模型开发能力等诸多方面的限制,许多人最终都只能在开发的早期阶段止步不前。然而,近期清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) Data Mining at Tsinghua University)发布

    2024年02月05日
    浏览(71)
  • 如何根据自有数据拟合绘制3D曲面图-Python matplotlib

    目录 问题提出 绘制简单曲面图 使用自有数据拟合绘制 在网上找了很久怎么用自己有的dataframe数据,拟合出3d的曲面图,大部分人都是根据已知函数去绘制,有几篇进行拟合绘制,但是还是根据特定函数生成的数据,没有一篇直接用dataframe数据画3d曲面图的。讲的比较好的几

    2024年02月09日
    浏览(48)
  • 将 Llama2 中文模型接入 FastGPT,再将 FastGPT 接入任意 GPT 套壳应用,真刺激!

    FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景! Llama2 是Facebook 母公司 Meta 发布的开源可商用大模型,国内的开源社区以及个人和机构也纷纷着手基于 Ll

    2024年02月10日
    浏览(44)
  • 语言模型ChatGPT,为什么能引领各行各业的AI技术革命

    为什么ChatGPT这样一个语言模型的发展能引发所有行业的AI技术革命呢? 答案就在于它能理解我们的自然语言, 并能将我们的语言转换成计算机能够完全理解的特征。 ChatGPT之所以能引领技术革命,关键在于它能理解我们的自然语言,并能将我们的语言转换成计算机能够完全理

    2023年04月16日
    浏览(60)
  • 引领语言智能革命的巨型语言模型 ChatGPT PK Google Bard , Anthropic

    ChatGPT是由OpenAI公司训练的一个大型语言模型,它可以生成人类可读的文本。这是一个基于Transformer架构的预训练模型,可以进行语言生成和语言理解任务。 OpenAI公司在2020年推出了ChatGPT,它是世界上最大的语言模型之一,有超过350亿个参数。它在大量语料数据的基础上进行预

    2024年02月09日
    浏览(52)
  • FPGA量子类比机制-FPQA,将在量子运算设计中引发一场新的革命

    1980年代现场可程式化逻辑门阵列(FPGA)的出现彻底改变了电子设计。大约40年后,现场可程式化量子位元阵列(FPQA)可望在量子运算电路设计中引发一场类似的革命。 1980年代现场可程式化逻辑闸阵列(FPGA)的出现彻底改变了电子设计。FPGA允许设计人员创建适合特定应用的定制逻辑

    2024年02月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包