一篇文章搞定《动手学深度学习》-(李沐)PyTorch版本的所有内容

这篇具有很好参考价值的文章主要介绍了一篇文章搞定《动手学深度学习》-(李沐)PyTorch版本的所有内容。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

目录

简介

阅读指南

1. 深度学习简介

2. 预备知识

3. 深度学习基础

4. 深度学习计算

5. 卷积神经网络

6. 循环神经网络

7. 优化算法

8. 计算性能

9. 计算机视觉

10. 自然语言处理

环境

参考(大家可以在这里下载代码)

原书地址(大家可以在这里阅读电子版PDF内容)

引用

阅读指南


目录

简介

阅读指南

1. 深度学习简介

2. 预备知识


2.1 环境配置
2.2 数据操作
2.3 自动求梯度

3. 深度学习基础


3.1 线性回归
3.2 线性回归的从零开始实现
3.3 线性回归的简洁实现
3.4 softmax回归
3.5 图像分类数据集(Fashion-MNIST)
3.6 softmax回归的从零开始实现
3.7 softmax回归的简洁实现
3.8 多层感知机
3.9 多层感知机的从零开始实现
3.10 多层感知机的简洁实现
3.11 模型选择、欠拟合和过拟合
3.12 权重衰减
3.13 丢弃法
3.14 正向传播、反向传播和计算图
3.15 数值稳定性和模型初始化
3.16 实战Kaggle比赛:房价预测

4. 深度学习计算


4.1 模型构造
4.2 模型参数的访问、初始化和共享
4.3 模型参数的延后初始化
4.4 自定义层
4.5 读取和存储
4.6 GPU计算

5. 卷积神经网络


5.1 二维卷积层
5.2 填充和步幅
5.3 多输入通道和多输出通道
5.4 池化层
5.5 卷积神经网络(LeNet)
5.6 深度卷积神经网络(AlexNet)
5.7 使用重复元素的网络(VGG)
5.8 网络中的网络(NiN)
5.9 含并行连结的网络(GoogLeNet)
5.10 批量归一化
5.11 残差网络(ResNet)
5.12 稠密连接网络(DenseNet)

6. 循环神经网络


6.1 语言模型
6.2 循环神经网络
6.3 语言模型数据集(周杰伦专辑歌词)
6.4 循环神经网络的从零开始实现
6.5 循环神经网络的简洁实现
6.6 通过时间反向传播
6.7 门控循环单元(GRU)
6.8 长短期记忆(LSTM)
6.9 深度循环神经网络
6.10 双向循环神经网络

7. 优化算法


7.1 优化与深度学习
7.2 梯度下降和随机梯度下降
7.3 小批量随机梯度下降
7.4 动量法
7.5 AdaGrad算法
7.6 RMSProp算法
7.7 AdaDelta算法
7.8 Adam算法

8. 计算性能


8.1 命令式和符号式混合编程
8.2 异步计算
8.3 自动并行计算
8.4 多GPU计算

9. 计算机视觉


9.1 图像增广
9.2 微调
9.3 目标检测和边界框
9.4 锚框
9.5 多尺度目标检测
9.6 目标检测数据集(皮卡丘)
 9.7 单发多框检测(SSD)
9.8 区域卷积神经网络(R-CNN)系列
9.9 语义分割和数据集
 9.10 全卷积网络(FCN)
9.11 样式迁移
 9.12 实战Kaggle比赛:图像分类(CIFAR-10)
 9.13 实战Kaggle比赛:狗的品种识别(ImageNet Dogs)

10. 自然语言处理


10.1 词嵌入(word2vec)
10.2 近似训练
10.3 word2vec的实现
10.4 子词嵌入(fastText)
10.5 全局向量的词嵌入(GloVe)
10.6 求近义词和类比词
10.7 文本情感分类:使用循环神经网络
10.8 文本情感分类:使用卷积神经网络(textCNN)
10.9 编码器—解码器(seq2seq)
10.10 束搜索
10.11 注意力机制
10.12 机器翻译

环境


matplotlib==3.3.2
torch==1.1.0
torchvision==0.3.0
torchtext==0.4.0
CUDA Version==11.0

参考(大家可以在这里下载代码)

本书PyTorch实现:Dive-into-DL-PyTorch
本书TendorFlow2.0实现:Dive-into-DL-TensorFlow2.0

原书地址(大家可以在这里阅读电子版PDF内容)

中文版:动手学深度学习 | Github仓库
English Version: Dive into Deep Learning | Github Repo

引用

如果您在研究中使用了这个项目请引用原书:

@book{zhang2019dive,
    title={Dive into Deep Learning},
    author={Aston Zhang and Zachary C. Lipton and Mu Li and Alexander J. Smola},
    note={\url{http://www.d2l.ai}},
    year={2020}
}

阅读指南

和原书一样,docs内容大体可以分为3个部分:

第一部分(第1章至第3章)涵盖预备工作和基础知识。第1章介绍深度学习的背景。第2章提供动手学深度学习所需要的预备知识。第3章包括深度学习最基础的概念和技术,如多层感知机和模型正则化。如果读者时间有限,并且只想了解深度学习最基础的概念和技术,那么只需阅读第一部分。
第二部分(第4章至第6章)关注现代深度学习技术。第4章描述深度学习计算的各个重要组成部分,并为实现后续更复杂的模型打下基础。第5章解释近年来令深度学习在计算机视觉领域大获成功的卷积神经网络。第6章阐述近年来常用于处理序列数据的循环神经网络。阅读第二部分有助于掌握现代深度学习技术。
第三部分(第7章至第10章)讨论计算性能和应用。第7章评价各种用来训练深度学习模型的优化算法。第8章检验影响深度学习计算性能的几个重要因素。第9章和第10章分别列举深度学习在计算机视觉和自然语言处理中的重要应用。这部分内容读者可根据兴趣选择阅读。
下图描绘了《动手学深度学习》的结构。

一篇文章搞定《动手学深度学习》-(李沐)PyTorch版本的所有内容

上图中由甲章指向乙章的箭头表明甲章的知识有助于理解乙章的内容。

如果读者想短时间了解深度学习最基础的概念和技术,只需阅读第1章至第3章;

如果读者希望掌握现代深度学习技术,还需阅读第4章至第6章。

第7章至第10章读者可以根据兴趣选择阅读。文章来源地址https://www.toymoban.com/news/detail-423040.html

到了这里,关于一篇文章搞定《动手学深度学习》-(李沐)PyTorch版本的所有内容的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 一篇文章搞定克拉美罗界(CRB)

    二郎最近在研究LBL(长基线)定位,大部分论文都提到了文中算法获得的方差接近CRB,所以自己的算法性能较好。于是二郎就想知道克拉美罗界是什么意思,以及能应用的场景。 1)查文档: 克拉美罗界:为无偏估计量的方差确定一个下界,衡量无偏估计的性能。 无偏估计:

    2024年02月15日
    浏览(53)
  • 一篇文章搞定《APP的启动流程》

    前面已经铺垫了Binder、Handler、View的绘制流程 那么该来看看APP的启动流程了,是如何启动了我们这些重要的组件 本文会按照步骤和启动需要的成员并附带一点点源码进行讲解。 以了解熟悉启动的流程为主。不会大篇幅的利用源码深入。 本文结构: 1、冷启动、温启动、热启

    2024年02月16日
    浏览(48)
  • 深度学习环境配置Anaconda+cuda+cudnn+PyTorch——李沐大神《动手学深度学习》环境配置(巨详细,持续迭代)

    Anaconda+cuda+cudnn+Pytorch(手把手教你安装深度学习环境)——这里是GPU+PyTorch版本 国内AI教学体系发展较晚,很多喜欢AI的同学都得不到系统的学习。当然我们也不否认国内一些优质的AI领域的课程和教学资料,这里我们主要推荐李沐大神推出的《动手学深度学习》,这门课程最初

    2024年02月15日
    浏览(78)
  • 一篇文章搞定Android权限问题(全版本)

    文章内容如下: 如果你只是想快速的完成你Android权限申请的工作,那么直接上工具PermissionX 如果是想真正的了解Android的权限问题,那么建议你用15分钟通读一下本文。(可以不去实验,收藏以备后用) 首先了解Android版本和SDK的关系,帮助我们分辨后面的权限版本。 其次把最常

    2023年04月20日
    浏览(56)
  • 一篇文章搞定《Android权限问题(全版本)》

    文章内容如下: 如果你只是想快速的完成你Android权限申请的工作,那么直接上工具PermissionX 如果是想真正的了解Android的权限问题,那么建议你用15分钟通读一下本文。(可以不去实验,收藏以备后用) 首先了解Android版本和SDK的关系,帮助我们分辨后面的权限版本。 其次把最常

    2024年02月03日
    浏览(54)
  • 【Unity】一篇文章搞定AStar(A*)算法

    AStar(A*)算法,是一种在静态网格中求解最短路径直接有效的搜索方法。在游戏开发中,A*算法常应用于部分RPG游戏和策略战棋类游戏。对于Unity开发者来说,掌握A*算法也是十分有必要的。不过在了解A*算法之前,有必要先回顾一下深度优先算法(DFS)、广度优先算法(BFS)

    2024年02月02日
    浏览(58)
  • Python和PyTorch深入实现线性回归模型:一篇文章全面掌握基础机器学习技术

    线性回归是一种统计学中的预测分析,该方法用于建立两种或两种以上变量间的关系模型。线性回归使用最佳的拟合直线(也称为回归线)在独立(输入)变量和因变量(输出)之间建立一种直观的关系。简单线性回归是输入变量和输出变量之间的线性关系,而多元线性回归

    2024年02月15日
    浏览(52)
  • 一篇文章搞定Java中常用集合的排序方法

    目录 Array · 数组 List · 列表 Collections.sort() 简单类型 复杂对象 类 使用Lambda表达式 Stream API Map · 键值对 对 Map 的 Key 进行排序 对 Map 的 Value 进行排序 最近在做算法题的时候,发现排序在大部分题中都不可或缺,今天心血来潮,总结下Java中集合排序常用的方法,基本覆盖了大

    2024年02月09日
    浏览(55)
  • Spring之AOP(带你一篇文章搞定AOP)

    Spring的核心之一:AOP 用的依赖(包括上篇文章讲诉的IOC依赖): AOP:面向切面编程。利用 AOP 可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各部分之间的耦合度降低,提高程序的可重用性,同时提高了开发的效率。通俗来说就是在不修改代码的情况下添加新的功能

    2024年02月16日
    浏览(56)
  • 一篇文章搞定什么是nodeJs它和NPM关系与应用

    现在前端的入门门槛越来越高了,不再是单纯 html+css+js ,各种前端框架 层出不穷,各种ui组件库层出不穷。 模块化,打包化,各种工具库层出不穷,前端变成 大前端 ,甚至前端可以搞定整个项目,通过 node 作为服务端api, 这里我们主角就是 nodeJs javaScript是一门脚本语言,

    2024年02月03日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包