【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

能源管理系统(EMS)有助于优化微电网中分布式能源(DER)的使用,特别是在涉及可变定价和发电时。本文使用预测定价和负荷条件来优化存储/销售来自电网规模电池系统的能量。演示了两种方法:启发式状态机策略和基于线性程序的优化方法。

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现) 

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

📚2 运行结果

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

for i = 1:numSim
    if i <= numOffset*numel(pvDataSet)
        heuristicCost(end+1) = out(i).logsout{1}.Values.Data(end);
    else
        optCost(end+1)= out(i).logsout{1}.Values.Data(end);
    end
end
histogram(heuristicCost); hold on;
histogram(optCost);
legend('Heuristic','Optimization');
xlabel('Cost per Day ($)'); hold off;

【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现) 部分代码:

function [Pgrid,Pbatt,Ebatt] = battSolarOptimize(N,dt,Ppv,Pload,Einit,Cost,FinalWeight,batteryMinMax)

% Minimize the cost of power from the grid while meeting load with power 
% from PV, battery and grid 

prob = optimproblem;

% Decision variables
PgridV = optimvar('PgridV',N);
PbattV = optimvar('PbattV',N,'LowerBound',batteryMinMax.Pmin,'UpperBound',batteryMinMax.Pmax);
EbattV = optimvar('EbattV',N,'LowerBound',batteryMinMax.Emin,'UpperBound',batteryMinMax.Emax);

% Minimize cost of electricity from the grid
prob.ObjectiveSense = 'minimize';
prob.Objective = dt*Cost'*PgridV - FinalWeight*EbattV(N);

% Power input/output to battery
prob.Constraints.energyBalance = optimconstr(N);
prob.Constraints.energyBalance(1) = EbattV(1) == Einit;
prob.Constraints.energyBalance(2:N) = EbattV(2:N) == EbattV(1:N-1) - PbattV(1:N-1)*dt;

% Satisfy power load with power from PV, grid and battery
prob.Constraints.loadBalance = Ppv + PgridV + PbattV == Pload;

% Solve the linear program
options = optimoptions(prob.optimoptions,'Display','none');
[values,~,exitflag] = solve(prob,'Options',options);

% Parse optmization results
if exitflag <= 0
    Pgrid = zeros(N,1);
    Pbatt = zeros(N,1);
    Ebatt = zeros(N,1);
else
    Pgrid = values.PgridV;
    Pbatt = values.PbattV;
    Ebatt = values.EbattV;
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Jonathan LeSage (2023). Microgrid Energy Management System (EMS) using Optimization.文章来源地址https://www.toymoban.com/news/detail-423167.html

🌈4 Matlab代码实现

到了这里,关于【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 启发式算法之灰狼优化算法

    蚁群算法?秃鹰算法?布谷鸟算法?鱼群算法?猴群算法?这都是些啥? 这些算法听起来都很接地气,实际上也确实很接地气。它们都是学者通过观察动物们的行为得到的灵感,从而设计出来的精彩的算法。以动物命名的算法可远不止这些,比如还有蜂群算法、狼群算法、蝙

    2024年02月13日
    浏览(42)
  • 启发式搜索 :A*算法详解

    A*算法,(A-Star)算法是一种静态路网中求解 最短路径 最有效的 直接搜索方法 ,也是解决许多搜索问题的有效算法。 算法中的距离估算值与实际值 越接近 ,最终搜索速度越快。 对于求两个点之间的最短路 普通的BFS是按层遍历的过程,以起点为中心,以到终点的最短路为半径

    2023年04月08日
    浏览(42)
  • 树上启发式合并(dsu on tree)

    dsu on tree dsu text{dsu} dsu 一般指 disjoint set union text{disjoint set union} disjoint set union ,即并查集。 dsu on tree text{dsu on tree} dsu on tree 指树上合并与查询操作,但它的实现和普通的并查集并无关联,两者的共同点仅仅在于都能合并集合和查询而已。 dsu on tree text{dsu on tree} d

    2024年02月16日
    浏览(41)
  • 【启发式算法】灰狼优化算法【附python实现代码】

    写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬

    2024年02月16日
    浏览(35)
  • 非梯度类启发式搜索算法:Nelder Mead

    Hello,今天给大家介绍一种不基于梯度的优化算法 Nelder Mead。 Nelder Mead 算法通常是用来求解非线性(nonlinear)、导函数未知情况下目标函数的最大值或者最小值。学过梯度下降的同学应该知道,梯度下降类算法的每一步都需要计算当前位置的梯度,从而更新当前解使得最终逐

    2024年02月02日
    浏览(46)
  • 求解三维装箱问题的启发式深度优先搜索算法(python)

    给定一个容器(其体积为 V V V ) 和一系列待装载的箱子,容器和箱子的形状都是长方体。问题的目标是要确定一个可行的箱子放置方案使得在满足给定装载约束的情况下,容器中包含的箱子总体积 S S S 尽可能的大,即填充率尽可能的大,这里填充率指的是 S / V ∗ 100 % S/ V * 1

    2024年02月05日
    浏览(99)
  • 元启发式算法库 MEALPY 初体验-遗传算法为例

    官网: MealPY官网 开源许可: (GPL) V3 MEALPY (MEta-heuristic ALgorithms in PYthon) 是一个提供最新自然启发式元启发算法的Python模块,它是最大的此类Python模块之一。这些算法模仿自然界中的成功过程,包括生物系统以及物理和化学过程。mealPy 的目标是免费向所有人分享元启发领域的知识

    2024年04月11日
    浏览(42)
  • 【论文阅读】聚集多个启发式信号作为监督用于无监督作文自动评分

    本文提出一个新的无监督的AES方法ULRA,它不需要真实的作文分数标签进行训练; ULRA的核心思想是使用多个启发式的质量信号作为伪标准答案,然后通过学习这些质量信号的聚合来训练神经自动评分模型。 为了将这些不一致的质量信号聚合为一个统一的监督信号,我们将自动

    2024年02月16日
    浏览(39)
  • 人工大猩猩部队优化器:一种新的面向全局优化问题的自然启发元启发式算法(Matlab代码实现)

           目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 元启发式在解决优化问题方面发挥着关键作用,其中大多数都受到自然界中自然生物集体智慧的启发。本文提出了一种新的元启发式算法,其灵感来自自然界大猩猩部队的社会智能,称为人工大猩猩部

    2024年02月01日
    浏览(43)
  • 【无码专区1】简单路径的第二大边权(启发式合并+最小生成树)

    只有std,没有自我实现,所以叫做无码专区 description 给一张无向图,多次询问,每次询问两个点之间所有简单路径(不重复经过点)中边权第二大(不是严格第二大)的权值的最小值。 数据范围: 1 0 5 10^5 1 0 5 级别 我的想法 前 50 % 50% 5 0 % 的数据 q , n ≤ 1 0 3 , m ≤ 2 × 1 0

    2024年02月08日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包