【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测

这篇具有很好参考价值的文章主要介绍了【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

源码链接:https://github.com/ultralytics/ultralytics
yolov8和yolov5是同一作者,相比yolov5,yolov8的集成性更好了,更加面向用户了
YOLO命令行界面(command line interface, CLI) 方便在各种任务和版本上训练、验证或推断模型。CLI不需要定制或代码,可以使用yolo命令从终端运行所有任务。

如果想了解yolo系列的更新迭代,以及yolov8的模型结构,推荐下面的链接:
YOLOv8详解 【网络结构+代码+实操】
笔者直接从实操入手

1 环境配置

安装pytorch、torchvision和其他依赖库

环境配置部分可以参考笔者的博客
【YOLO】YOLOv5-6.0环境搭建(不定时更新)

安装ultralytics

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

2 数据集准备

针对检测的数据集准备可以参考笔者的博客,这里不再赘述了
【YOLO】训练自己的数据集

3 模型训练

比起YOLOv5,YOLOv8的训练封装性更好了,有利有弊吧,参数默认值修改比较麻烦

训练指令如下:

yolo task=detect mode=train model=yolov8s.pt data=/media/ll/L/llr/DATASET/subwayDatasets/coco.yaml device=0 cache=True epochs=300 project=/media/ll/L/llr/mode name=yolov8

除了上述笔者使用的参数,其他参数说明

task: detect  # 可选择:detect, segment, classify
mode: train  #可选择: train, val, predict

# Train settings -------------------------------------------------------------------------------------------------------

model:  # 设置模型。格式因任务类型而异。支持model_name, model.yaml,model.pt
data:  # 设置数据,支持多数类型 data.yaml, data_folder, dataset_name
epochs: 300  # 需要训练的epoch数
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 16  # Dataloader的batch大小
imgsz: 640  # Dataloader中图像数据的大小
save: True  # save train checkpoints and predict results
save_period: -1 # Save checkpoint every x epochs (disabled if < 1)
cache: True  # True/ram, disk or False. Use cache for data loading
device:  # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8  # 每个进程使用的cpu worker数。使用DDP自动伸缩
project: /media/ll/L/llr/model # project name
name: yolov8 # experiment name
exist_ok: False  # whether to overwrite existing experiment
pretrained: False  # whether to use a pretrained model
optimizer: SGD  # 支持的优化器:Adam, SGD, RMSProp
verbose: True  # whether to print verbose output
seed: 0  # random seed for reproducibility
deterministic: True  # whether to enable deterministic mode
single_cls: False  # 将多类数据作为单类进行训练
image_weights: False  # 使用加权图像选择进行训练
rect: False  # 启用矩形训练
cos_lr: False  # 使用cosine LR调度器
close_mosaic: 10  # disable mosaic augmentation for final 10 epochs
resume: False  # resume training from last checkpoint
min_memory: False  # minimize memory footprint loss function, choices=[False, True, <roll_out_thr>]
# Segmentation
overlap_mask: True  # 分割:在训练中使用掩码重叠
mask_ratio: 4  # 分割:设置掩码下采样
# Classification
dropout: 0.0  # 分类:训练时使用dropout

# Val/Test settings ----------------------------------------------------------------------------------------------------
val: True  # validate/test during training
split: val  # dataset split to use for validation, i.e. 'val', 'test' or 'train'
save_json: False  # save results to JSON file
save_hybrid: False  # save hybrid version of labels (labels + additional predictions)
conf:  # object confidence threshold for detection (default 0.25 predict, 0.001 val)
iou: 0.7  # intersection over union (IoU) threshold for NMS
max_det: 300  # maximum number of detections per image
half: False  # use half precision (FP16)
dnn: False  # 使用OpenCV DNN进行ONNX推断
plots: True  # 在验证时保存图像

# Prediction settings --------------------------------------------------------------------------------------------------
source:  # 输入源。支持图片、文件夹、视频、网址
show: False  # 查看预测图片
save_txt: False  # 保存结果到txt文件中
save_conf: False  # save results with confidence scores
save_crop: False  # save cropped images with results
hide_labels: False  # hide labels
hide_conf: False  # hide confidence scores
vid_stride: 1  # 输入视频帧率步长
line_thickness: 3  # bounding box thickness (pixels)
visualize: False  # 可视化模型特征
augment: False  # apply image augmentation to prediction sources
agnostic_nms: False  # class-agnostic NMS
classes:  # filter results by class, i.e. class=0, or class=[0,2,3]
retina_masks: False  #分割:高分辨率掩模
boxes: True # Show boxes in segmentation predictions

# Export settings ------------------------------------------------------------------------------------------------------
format: torchscript  # format to export to
keras: False  # use Keras
optimize: False  # TorchScript: optimize for mobile
int8: False  # CoreML/TF INT8 quantization
dynamic: False  # ONNX/TF/TensorRT: dynamic axes
simplify: False  # ONNX: simplify model
opset:  # ONNX: opset version (optional)
workspace: 4  # TensorRT: workspace size (GB)
nms: False  # CoreML: add NMS

# Hyperparameters ------------------------------------------------------------------------------------------------------
lr0: 0.01  # 初始化学习率
lrf: 0.01  # 最终的OneCycleLR学习率
momentum: 0.937  # 作为SGD的momentum和Adam的beta1
weight_decay: 0.0005  # 优化器权重衰减
warmup_epochs: 3.0  # Warmup的epoch数,支持分数)
warmup_momentum: 0.8  # warmup的初始动量
warmup_bias_lr: 0.1  # Warmup的初始偏差lr
box: 7.5  # box loss gain
cls: 0.5  # cls loss gain (scale with pixels)
dfl: 1.5  # dfl loss gain
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
label_smoothing: 0.0  # label smoothing (fraction)
nbs: 64  # nominal batch size
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.0  # image mixup (probability)
copy_paste: 0.0  # segment copy-paste (probability)

# Custom config.yaml ---------------------------------------------------------------------------------------------------
cfg:  # for overriding defaults.yaml

# Debug, do not modify -------------------------------------------------------------------------------------------------
v5loader: False  # use legacy YOLOv5 dataloader

4 模型预测

weight_path = "best.pt"  # 自训练的模型
imgdir = r'/media/ll/L/llr/DATASET/subwayDatasets/bjdt/images' 
img_path = r'/media/ll/L/llr/DATASET/subwayDatasets/bjdt/images/L_0000018.jpg'
model = YOLO(weight_path)
results = model(img_path,show=False,save=False)  # 是否显示和保存结果数据

预测一张图片,results如下图所示:
【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测
预测文件夹目录,results如图所示:
【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测
无论是一张图片还是图片目录,返回的results都是list

要对预测结果进行处理需要索引进去,如下图所示
【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测
结果参数说明:

 boxes:各种形式的检测框信息(xyxy、xywh、归一化的)、类别索引、置信度等
 names:类别字典
 orig_img:原图数组
 orig_shape:原图尺寸
 plots:在验证时保存图像(预测时一般为None)
 speed:处理速度

【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测
【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测
基于上述模型提供的检测结果进行后处理算法等

上述即为yolov8的快速使用文章来源地址https://www.toymoban.com/news/detail-423560.html

到了这里,关于【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【3】使用YOLOv8训练自己的目标检测数据集-【收集数据集】-【标注数据集】-【划分数据集】-【配置训练环境】-【训练模型】-【评估模型】-【导出模型】

    云服务器训练YOLOv8-新手教程-哔哩哔哩 🍀2023.11.20 更新了划分数据集的脚本 在自定义数据上训练 YOLOv8 目标检测模型的步骤可以总结如下 6 步: 🌟收集数据集 🌟标注数据集 🌟划分数据集 🌟配置训练环境 🌟训练模型 🌟评估模型 随着深度学习技术在计算机视觉领域的广泛

    2023年04月15日
    浏览(85)
  • YOLOv8教程系列:二、为YOLO系列数据集添加背景图片,降低误识别率

    在自己的工作空间里新建一个create_xml.py的文件,将下述代码复制进去 新建一个保存xml的文件夹,将脚本的74行的JpgPath和XmlPath修改为自己的文件夹路径,这是我的background文件夹: 这是我运行成功的截图 这是新生成的xml文件 最后,将图片和xml都复制到对应的待训练文件夹中,

    2024年02月13日
    浏览(48)
  • YOLOV8 进行docker环境配置

    原docekerfile中ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/下载很慢,可以在外部下载好,放入docker文件夹中,再将源代码改为ADD Arial.ttf Arial.Unicode.ttf /root/.config/Ultralytics/(其它下载内容类似修改包括yolo8.pt,) 可在RUN pip install -

    2024年02月04日
    浏览(38)
  • 目标检测笔记(十四): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

    目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防

    2024年02月07日
    浏览(52)
  • YOLOv8 目标检测 | 自定义数据集

    本文介绍了使用用于目标检测的自定义数据训练 YOLOv8 模型。我正在使用来自 kaggle 的 yolo 格式的“Face Mask Dataset”,数据集链接如下:https://www.kaggle.com/datasets/maalialharbi/face-mask-dataset?resource=download YOLOv8 是目前最先进的 YOLO 模型,可用于目标检测、图像分类和实例分割任务。

    2023年04月08日
    浏览(47)
  • yolov8训练自己的数据集,报错:no such command ‘detect‘或者command ‘yolo‘ not found

    报错:command \\\'yolo\\\' not found ,did you mean:command \\\'rolo\\\' from deb rolo 针对这个问题直接:pip install yolo 报错:no such command \\\'detect\\\'/no such command task= \\\'detect 找了很多教程,最后在谷歌上看见了一个方法,试了一下,就成功了 输入:python setup.py install 即可

    2024年02月15日
    浏览(55)
  • YOLOv8 来了,快速上手实操

    👨‍💻 作者简介:程序员半夏 , 一名全栈程序员,擅长使用各种编程语言和框架,如JavaScript、React、Node.js、Java、Python、Django、MySQL等.专注于大前端与后端的硬核干货分享,同时是一个随缘更新的UP主. 你可以在各个平台找到我! 🏆 本文收录于专栏: YOLO ——————————

    2024年02月03日
    浏览(42)
  • 基于 YOLOv8 的自定义数据集训练

    图1.1:YOLOv8初始测试 YOLOv8🔥于 2023年1月10日由Ultralytics发布。它在计算机视觉方面提供了进展,带来了对我们感知、分析和理解视觉世界的巨大创新。它将为各个领域带来前所未有的可能性。 在速度、准确性和架构方面进行了相当大的改进。它是从头开始实现的,没有使用任

    2024年02月11日
    浏览(51)
  • YOLOv8训练自定义数据集(超详细)

    借鉴 YOLOv8训练自己的数据集(超详细)_AI追随者的博客-CSDN博客 安装 requirements.txt 下载:https://raw.githubusercontent.com/ultralytics/ultralytics/main/requirements.txt 然后在你 目录下执行 pip install -r requirements.txt 它的 requirements 主要是以下 包,用下面代码检查下自己还缺哪些,补上就好。 安装

    2023年04月16日
    浏览(52)
  • YOLOv8详解 【网络结构+代码+实操】

    🚀🚀🚀 目标检测——Yolo系列(YOLOv1/2/v3/4/5/x/6/7) ✨✨✨ YOLOv8改进——引入可变形卷积DCNv3 YOLOv8是目前YOLO系列算法中最新推出的检测算法,YOLOv8可以完成检测、分类、分割任务,其检测和分割网络结构图如下。 YOLOv8 算法的核心特性和改动可以归结为如下: 提供了一个全新

    2024年02月01日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包