一文速学数模-最优化算法(二)梯度下降算法一文详解+Python代码

这篇具有很好参考价值的文章主要介绍了一文速学数模-最优化算法(二)梯度下降算法一文详解+Python代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

一、梯度下降法简述

二、梯度下降算法原理理解

1.梯度

2.梯度定义文章来源地址https://www.toymoban.com/news/detail-423624.html

到了这里,关于一文速学数模-最优化算法(二)梯度下降算法一文详解+Python代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学学习——最优化问题引入、凸集、凸函数、凸优化、梯度、Jacobi矩阵、Hessian矩阵

    例如:有一根绳子,长度一定的情况下,需要如何围成一个面积最大的图像?这就是一个最优化的问题。就是我们高中数学中最常见的最值问题。 最优化问题的一般形式是: m i n ​ f ( x ) x ∈ C min​f(x) \\\\ x in C min ​ f ( x ) x ∈ C 其中, f f f 是目标函数, A A A 是约束条件,

    2024年02月15日
    浏览(46)
  • 机器学习笔记之最优化理论与方法(十)无约束优化问题——共轭梯度法背景介绍

    本节将介绍 共轭梯度法 ,并重点介绍共轭方向法的逻辑与几何意义。 关于 最小化 二次目标函数: min ⁡ f ( x ) = min ⁡ 1 2 x T Q x + C T x begin{aligned}min f(x) = min frac{1}{2} x^T mathcal Q x + mathcal C^T xend{aligned} min f ( x ) = min 2 1 ​ x T Q x + C T x ​ ,其中 Q ∈ R n × n ; Q ≻ 0 mathcal Q

    2024年02月09日
    浏览(48)
  • 最优化:建模、算法与理论(优化建模)

    目前在学习 最优化:建模、算法与理论这本书,来此记录一下,顺便做一些笔记,在其中我也会加一些自己的理解,尽量写的不会那么的条条框框(当然最基础的还是要有) 本章将从常用的建模技巧开始,接着介绍统计学、信号处理、图像处理以及机器学习中常见的优化模

    2024年02月10日
    浏览(192)
  • 最优化:建模、算法与理论(最优性理论2

    考虑优化问题 min ⁡ x ∈ R n 1 2 ∣ ∣ x − y ∣ ∣ 2 2 , s . t . A x = b min_{x{in}R^n}frac{1}{2}||x-y||_2^2,\\\\ s.t.{quad}Ax=b x ∈ R n min ​ 2 1 ​ ∣∣ x − y ∣ ∣ 2 2 ​ , s . t . A x = b 其中 A ∈ R m × n , b ∈ R m , y ∈ R n A{in}R^{m times n},b{in}R^m,y{in}R^n A ∈ R m × n , b ∈ R m , y ∈ R n 为给定的矩阵

    2024年02月07日
    浏览(46)
  • 最优化:建模、算法与理论(优化建模——2)

    聚类分析是 统计学中的一个基本问题,其在机器学习,数据挖掘,模式识别和图像分析中有着重要应用。聚类不同于分类,在聚类问题中我们仅仅知道数据点本身,而不知道每个数据点具体的标签。聚类分析的任务就是将一些无标签的数据点按照某种相似度来进行归类,进而

    2024年02月09日
    浏览(51)
  • 最优化:建模、算法与理论(典型优化问题

    4.1.1 基本形式和应用背景 再次说明一下,其实这本书很多的内容之前肯定大家都学过,但是我觉得这本书和我们之前学的东西的出发角度不一样,他更偏向数学,也多一个角度让我们去理解 线性规划问题的一般形式如下: min ⁡ x ∈ R n c T x s . t . A x = b G x ≤ e (4.1.1) min_{x{

    2024年02月09日
    浏览(271)
  • 【机器学习】最大熵模型【下】最大熵模型学习的最优化算法

    有任何的书写错误、排版错误、概念错误等,希望大家包含指正。 由于字数限制,分成两篇博客。 【机器学习】最大熵模型【上】最大熵模型概述与约束最优化问题 【机器学习】最大熵模型【下】最大熵模型学习的最优化算法 这里的最优化算法就是用于训练最大熵模型参数

    2023年04月15日
    浏览(56)
  • 多目标最优化模型及算法应用(NSGA-II)

    一.大纲 多目标最优化模型概论 传统最优化解决方法 现代最优化算法 样例示范 二.多目标最优化模型概论 1.对于多余一个的目标函数在给定区域内的最优化问题称为多目标优化问题。 ​ 例如:在给定条件下,设计一款汽车,既要满足安全(重量大),又要满足经济(耗油量

    2024年02月03日
    浏览(46)
  • 优化算法之梯度下降|Matlab实现梯度下降算法

    题目要求: 使用Matab实现梯度下降法 对于函数: min ⁡ f ( x ) = 2 x 1 2 + 4 x 2 2 − 6 x 1 − 2 x 1 x 2 min f(x)=2 x_{1}^{2}+4 x_{2}^{2}-6 x_{1}-2 x_{1} x_{2} min f ( x ) = 2 x 1 2 ​ + 4 x 2 2 ​ − 6 x 1 ​ − 2 x 1 ​ x 2 ​ 试采用 MATLAB实现最速下降法求解该问题, 给出具体的迭代过程、 最终优化结果、

    2024年02月16日
    浏览(50)
  • dijkstra算法:堆优化 + 输出所有最短路径(得到所有最优解)

    对于权值非负的图求解单源最短路径,第一想法是使用dijkstra算法。最短路径问题是满足最优子结构的:父问题一定会使用子问题的最优解。问题在于子问题的计算次序。dijkstra算法思想建立在我们为无负权图定义的子问题计算顺序基础上:即离源点最近点不会变成其他问题的

    2023年04月08日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包