YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制

这篇具有很好参考价值的文章主要介绍了YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🍵 介绍

SE-Net 是 ImageNet 2017(ImageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。

🍛 SE-Net注意力模块

已经有很多工作在空间维度上来提升网络的性能,如 Inception 等,而 SENet 将关注点放在了特征通道之间的关系上。其具体策略为:通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大的特征,这又叫做“特征重标定”策略。具体的 SE 模块如下图所示:
YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制
给定一个输入 x x x ,其特征通道数为 c 1 c_1 c1,通过一系列卷积等一般变换 F t r F_{tr} Ftr 后得到一个特征通道数为 c 2 c_2 c2 的特征。与传统的卷积神经网络不同,我们需要通过下面三个操作来重标定前面得到的特征。

  1. 首先是 Squeeze 操作,我们顺着空间维度来进行特征压缩,将一个通道中整个空间特征编码为一个全局特征,这个实数某种程度上具有全局的感受野,并且输出的通道数和输入的特征通道数相等,例如将形状为 (1, 32, 32, 10) 的 feature map 压缩成 (1, 1, 1, 10)。此操作通常采用采用 global average pooling 来实现。
  2. 得到了全局描述特征后,我们进行 Excitation 操作来抓取特征通道之间的关系,它是一个类似于循环神经网络中门的机制:
    YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制
    这里采用包含两个全连接层的 bottleneck 结构,即中间小两头大的结构:其中第一个全连接层起到降维的作用,并通过 ReLU 激活,第二个全连接层用来将其恢复至原始的维度。进行 Excitation 操作的最终目的是为每个特征通道生成权重,即学习到的各个通道的激活值(sigmoid 激活,值在 0~1 之间)。
  3. 最后是一个 Scale 的操作,我们将 Excitation 的输出的权重看做是经过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定,从而使得模型对各个通道的特征更有辨别能力,这类似于attention机制。

🥡 SE-Net注意力模块应用分析

SE模块的灵活性在于它可以直接应用现有的网络结构中。以 Inception 和 ResNet 为例,我们只需要在 Inception 模块或 Residual 模块后添加一个 SE 模块即可。具体如下图所示:
YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制
上图分别是将 SE 模块嵌入到 Inception 结构与 ResNet 中的示例,方框旁边的维度信息代表该层的输出, r r r 表示 Excitation 操作中的降维系数。

🍘 SE-Net注意力模块效果对比

SE 模块很容易嵌入到其它网络中,为了验证 SE 模块的作用,在其它流行网络如 ResNet 和 Inception 中引入 SE 模块,测试其在 ImageNet 上的效果,如下表所示:

YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制

首先看一下网络的深度对 SE 的影响。上表分别展示了 ResNet-50、ResNet-101、ResNet-152 和嵌入 SE 模型的结果。第一栏 Original 是原作者实现的结果,为了进行公平的比较,重新进行了实验得到 Our re-implementation 的结果。最后一栏 SE-module 是指嵌入了 SE 模块的结果,它的训练参数和第二栏 Our re-implementation 一致。括号中的红色数值是指相对于 Our re-implementation 的精度提升的幅值。

从上表可以看出,SE-ResNets 在各种深度上都远远超过了其对应的没有SE的结构版本的精度,这说明无论网络的深度如何,SE模块都能够给网络带来性能上的增益。值得一提的是,SE-ResNet-50 可以达到和ResNet-101 一样的精度;更甚,SE-ResNet-101 远远地超过了更深的ResNet-152。

YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制

上图展示了ResNet-50 和 ResNet-152 以及它们对应的嵌入SE模块的网络在ImageNet上的训练过程,可以明显地看出加入了SE模块的网络收敛到更低的错误率上。

🥙 YOLOv5中插入SE-Net注意力模块

1. 增加 SEAttention.yaml 文件

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
   [-1, 1, SEAttention, [1024]],

   [[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

2. common.py配置

./models/common.py文件中增加以下模块


import numpy as np
import torch
from torch import nn
from torch.nn import init


# https://arxiv.org/abs/1709.01507
class SEAttention(nn.Module):

    def __init__(self, channel=512,reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

3. yolo.py配置

找到models/yolo.py文件中parse_model()函数的for i, (f, n, m, args) in enumerate(d['backbone'] + d['head'])(258行上下)并其循环内添加如下代码。文章来源地址https://www.toymoban.com/news/detail-423640.html

elif m is SEAttention:
    c1, c2 = ch[f], args[0]
    if c2 != no:
        c2 = make_divisible(c2 * gw, 8)

4. 训练模型

python train.py --cfg yolov5_SEAttention.yaml

到了这里,关于YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【目标检测】yolov5改进系列:主干网络中添加SE注意力机制网络

    写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 CNN网络中,图像或者说特征图Feature Map的特征主要分为空间特征(Spatial)和通道(Channel)特征。对于空间

    2023年04月16日
    浏览(46)
  • 改进YOLO系列:11.添加CrissCrossAttention注意力机制

    论文题目:CCNet: Criss-Cross Attention for Semantic Segmentation 论文链接:CCNet: Criss-Cross Attention for Semantic Segmentation

    2024年02月11日
    浏览(42)
  • 改进YOLO系列:3.添加SOCA注意力机制

    暂未找到 ./models/common.py文件增加以下模块 在最后添加如下

    2024年02月12日
    浏览(45)
  • 改进YOLO系列:9.添加S2Attention注意力机制

    论文题目:S 2 -MLPV2: IMPROVED SPATIAL-SHIFT MLP ARCHITECTURE FOR VISION 论文链接:S 2 -MLPV2: IMPROVED SPATIAL-SHIFT MLP ARCHITECTURE FOR VISION

    2024年02月11日
    浏览(43)
  • 改进YOLO系列:改进YOLOv8,教你YOLOv8如何添加20多种注意力机制,并实验不同位置。

    注意力机制(Attention Mechanism)是深度学习中一种重要的技术,它可以帮助模型更好地关注输入数据中的关键信息,从而提高模型的性能。注意力机制最早在自然语言处理领域的序列到序列(seq2seq)模型中得到广泛应用,后来逐渐扩展到了计算机视觉、语音识别等多个领域。

    2024年02月16日
    浏览(39)
  • U-Net网络模型改进(添加通道与空间注意力机制)---亲测有效,指标提升

    U-Net网络模型(注意力改进版本) 这一段时间做项目用到了U-Net网络模型,但是原始的U-Net网络还有很大的改良空间,在卷积下采样的过程中加入了通道注意力和空间注意力 。 常规的U-net模型如下图: 红色箭头为可以添加的地方:即下采样之间。 通道空间注意力是一个即插即

    2024年03月15日
    浏览(44)
  • YOLO Air:YOLO科研改进论文推荐 | 改进组合上千种搭配,包括Backbone,Neck,Head,注意力机制,适用于YOLOv5、YOLOv7、YOLOX等算法

    🔥🔥🔥YOLOAir开源算法库!!! 💡统一使用 YOLOv5、YOLOv7 代码框架, 结合不同模块来构建不同的YOLO目标检测模型。 🌟本项目包含大量的改进方式,降低改进难度,改进点包含 【Backbone特征主干】 、 【Neck特征融合】 、 【Head检测头】 、 【注意力机制】 、 【IoU损失函数】

    2024年02月01日
    浏览(49)
  • YOLOv8改进算法之添加CA注意力机制

    CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地理解不同位置之间的关系。如下图: 1. 输入特征 : CA 注意力机制的输入通常是一个特征图,它通常是卷积

    2024年02月08日
    浏览(42)
  • YOLOv5改进算法之添加CA注意力机制模块

    目录   1.CA注意力机制 2.YOLOv5添加注意力机制 送书活动   CA(Coordinate Attention)注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息,以便模型可以更好地理解不同位置之间的关系。如下图: 1. 输入特征

    2024年02月09日
    浏览(34)
  • 优化改进YOLOv5算法之添加SE、CBAM、CA模块(超详细)

    目录 1 SENet 1.1 SENet原理 1.2 SENet代码(Pytorch) 1.3 YOLOv5中加入SE模块  1.3.1 common.py配置 1.3.2 yolo.py配置 1.3.3 创建添加RepVGG模块的YOLOv5的yaml配置文件 2 CBAM 2.1 CBAM原理 2.2 CBAM代码(Pytorch) 2.3 YOLOv5中加入CBAM模块  2.3.1 common.py配置 2.3.2 yolo.py配置 2.3.3 创建添加CBAM模块的YOLOv5的yaml配

    2024年04月17日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包