算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树

这篇具有很好参考价值的文章主要介绍了算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

343. 整数拆分

题目链接:343. 整数拆分
参考:https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html

题目描述

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

  • 输入: 2
  • 输出: 1
  • 解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

  • 输入: 10

  • 输出: 36

  • 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

  • 说明: 你可以假设 n 不小于 2 且不大于 58。

思路

看到这道题目,都会想拆成两个呢,还是三个呢,还是四个…

我们来看一下如何使用动规来解决。

动态规划

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,因为 i固定,j在遍历,每次计算dp[i],取最大的而已。

  1. dp的初始化

不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

  1. 确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

所以遍历顺序为:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j < i - 1; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j <= i / 2; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 i/2 就可以,后面就没有必要遍历了,一定不是最大值。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:
算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树
以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)

这里注意取最大值时要多加一个{}。

贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

我没有证明,而是直接用了结论。感兴趣的同学可以自己再去研究研究数学证明哈。

给出我的C++代码如下:

class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        int result = 1;
        while (n > 4) {
            result *= 3;
            n -= 3;
        }
        result *= n;
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

总结

本题掌握其动规的方法,就可以了,贪心的解法确实简单,但需要有数学证明,如果能自圆其说也是可以的。

96.不同的二叉搜索树

题目链接:96.不同的二叉搜索树
参考:https://programmercarl.com/0096.%E4%B8%8D%E5%90%8C%E7%9A%84%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91.html

题目描述

给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:
算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树

思路

这道题目描述很简短,但估计大部分同学看完都是懵懵的状态,这得怎么统计呢?

关于什么是二叉搜索树,我们之前在讲解二叉树专题的时候已经详细讲解过了,也可以看看这篇二叉树:二叉搜索树登场! 再回顾一波。

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:
算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树
n为1的时候有一棵树,n为2有两棵树,这个是很直观的。
算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树
来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:
算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树
此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

  1. 确定dp数组(dp table)以及下标的含义

dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

  1. 确定递推公式
    在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  1. dp数组如何初始化

初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

  1. 确定遍历顺序
    首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

代码如下:

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        dp[i] += dp[j - 1] * dp[i - j];
    }
}
  1. 举例推导dp数组

n为5时候的dp数组状态如图:
算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树
当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

我这里列到了n为5的情况,是为了方便大家 debug代码的时候,把dp数组打出来,看看哪里有问题。

综上分析完毕,C++代码如下:

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( n ) O(n) O(n)

总结

这道题目虽然在力扣上标记是中等难度,但可以算是困难了!

首先这道题想到用动规的方法来解决,就不太好想,需要举例,画图,分析,才能找到递推的关系。

然后难点就是确定递推公式了,如果把递推公式想清楚了,遍历顺序和初始化,就是自然而然的事情了。文章来源地址https://www.toymoban.com/news/detail-423811.html

到了这里,关于算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C语言第四十一弹---猜数字游戏

     ✨ 个人主页:  熬夜学编程的小林 💗 系列专栏:   【C语言详解】   【数据结构详解】 猜数字游戏 1、随机数生成 1.1、rand 1.2、srand 1.3、time 1.4、设置随机数的范围 2、猜数字游戏的分析和设计 2.1、猜数字游戏功能说明 2.2、猜数字游戏的结构分析 2.2.1、用户选择 2.2.2、生

    2024年04月11日
    浏览(38)
  • 第四十一章 Unity 输入框 (Input Field) UI

    本章节我们学习输入框 (Input Field),它可以帮助我们获取用户的输入。我们点击菜单栏“GameObject”-“UI”-“Input Field”,我们调整一下它的位置,效果如下 我们在层次面板中发现,这个InputField UI元素包含两个子元素,一个是Placeholder,另一个是Text。如下所示 同样,我们查看

    2024年02月04日
    浏览(37)
  • 【LeetCode75】第四十一题 二叉搜索树中的搜索

    目录 题目: 示例: 分析: 代码: 题目给我们一个搜索二叉树,让我们找出节点值等于目标的节点并返回出去。 首先我们可以直接遍历整棵二叉树,找到值相同的节点就返回出去,不过这样就没有用到二叉搜索数的特性了。 二叉搜索数的特性就是,每一个节点的左子树上所

    2024年02月10日
    浏览(44)
  • 【从零开始学习JAVA | 第四十一篇】深入JAVA锁机制

    目录 前言:          引入: 锁机制:  CAS算法: 乐观锁与悲观锁: 总结: 在多线程编程中,线程之间的协作和资源共享是一个重要的话题。当多个线程同时操作共享数据时,就可能引发数据不一致或竞态条件等问题。为了解决这些问题,Java提供了强大的锁机制,使得

    2024年02月14日
    浏览(51)
  • 算法训练day41|动态规划 part03(LeetCode343. 整数拆分、96.不同的二叉搜索树)

    题目链接🔥🔥 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于

    2024年02月10日
    浏览(39)
  • 【正点原子STM32连载】 第四十一章 SPI实验 摘自【正点原子】APM32E103最小系统板使用指南

    1)实验平台:正点原子APM32E103最小系统板 2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420 3)全套实验源码+手册+视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban 本章将介绍使用APM32E103驱动板载的NOR Flash进行读写操作。通过本章的学习,读者将学习到使用SPI驱动

    2024年01月19日
    浏览(42)
  • 【算法与数据结构】343、LeetCode整数拆分

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :博主做这道题的时候一直在思考,如何找到 k k k 个正整数, k k k 究竟为多少合适。从数学的逻辑上来说,将 n n n 均分为 k k k 个数之后, k k k 个数的乘积为最大(类似于相同周长

    2024年01月17日
    浏览(51)
  • LeetCode算法题解(动态规划)|LeetCode343. 整数拆分、LeetCode96. 不同的二叉搜索树

    题目链接:343. 整数拆分 题目描述: 给定一个正整数  n  ,将其拆分为  k  个  正整数  的和(  k = 2  ),并使这些整数的乘积最大化。 返回  你可以获得的最大乘积  。 示例 1: 示例 2: 提示: 2 = n = 58 算法分析: 定义dp数组及下标含义: dp[i]表述正整数i拆分成k个正整数

    2024年02月04日
    浏览(38)
  • 343. 整数拆分(动态规划)

    给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k = 2 ),并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 提示: 2 = n = 58 本题比之前面的动态规划

    2024年01月20日
    浏览(48)
  • 343. 整数拆分

    343. 整数拆分 https://leetcode.cn/problems/integer-break/description/ 贴一张对比数据图,大家可以自行验证,是否上述规律会得到正确答案。

    2024年02月14日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包