K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的)
1、概述
K-means算法是集简单和经典于一身的基于距离的聚类算法
采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。
该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
2、核心思想
通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
k-means算法的基础是最小误差平方和准则,
其代价函数是:
式中,μc(i)表示第i个聚类的均值。
各类簇内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。
上式的代价函数无法用解析的方法最小化,只能有迭代的方法。
3、算法步骤图解
下图展示了对n个样本点进行K-means聚类的效果,这里k取2。
4、算法实现步骤
k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下:
1) 随机选取 k个聚类质心点
2) 重复下面过程直到收敛 {
对于每一个样例 i,计算其应该属于的类:
对于每一个类 j,重新计算该类的质心:文章来源:https://www.toymoban.com/news/detail-423998.html
文章来源地址https://www.toymoban.com/news/detail-423998.html
到了这里,关于K-means聚类算法及Python代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!