python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念

这篇具有很好参考价值的文章主要介绍了python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.sklearn.metrics.f1_score

2.sklearn.metrics.precision_score

3.sklearn.metrics.recall_score

4.Accuracy,、Precision、 Recall和F1-score公式​​​​​​​

5.TP、FP、TN、FN的概念


sklearn.metrics.f1_score官网链接sklearn.metrics.f1_score — scikit-learn 1.0.2 documentation

sklearn.metrics.f1_score(y_true, y_pred, *, labels=None, pos_label=1, 
average='binary', sample_weight=None, zero_division='warn')

重要参数说明:

y_true:一维数组,或标签指示数组/稀疏矩阵 (真实值)

y_pred:一维数组,或标签指示数组/稀疏矩阵 (预测值)

pos_label:str or int, default=1

                  报告是否average='binary'且数据为binary的类。如果数据是多类或多标签的,这将                          被忽略;设置labels=[pos_label]和average != 'binary'将只报告该标签的分数。

average:{‘micro’, ‘macro’, ‘samples’,’weighted’, ‘binary’} or None, default=’binary’

                多类/多标签目标时需要此参数。如果为None,则返回每个类的分数。否则,这决定了对数据进行平均的类型:

        “binary”: 只报告由pos_label指定的类的结果。这只适用于目标(y_{true,pred})是二进制的情况。

        “micro”: 通过计算总真阳性、假阴性和假阳性来全局计算指标。

        “macro”: 计算每个标签的度量,并找到它们的未加权平均值。这还没有考虑到标签的不平衡。

         “weighted”:  计算每个标签的指标,并根据支持找到它们的平均权重(每个标签的真实实例数)。这改变了“宏观”的标签不平衡;它会导致一个不介于准确率和召回率之间的f值。

         “samples”:  为每个实例计算指标,并找到它们的平均值(仅对与accuracy_score不同的多标签分类有意义)。

sample_weight:array-like of shape (n_samples,), default=None

           样本的权重

zero_division:“warn”, 0 or 1, default=”warn”

                设置除法为零时返回的值,即所有预测和标签为负数时返回。如果设置为" warn ",这将充当0,但也会引发警告。

返回值:

f1_score:float or array of float, shape = [n_unique_labels]
         二分类中正类的F1分,
         或多类任务中,每个类的F1分的加权平均。

示例:

from sklearn.metrics import f1_score

y_true = [0, 1, 1, 1, 2, 2]
y_pred = [0, 1, 1, 2, 1, 2]

macro_f1 = f1_score(y_true, y_pred, average='macro')

micro_f1 = f1_score(y_true, y_pred, average='micro')

weighted_f1= f1_score(y_true, y_pred, average='weighted')

None_f1 = f1_score(y_true, y_pred, average=None)

print('macro_f1:',macro_f1,'\nmicro_f1:',micro_f1,'\nweighted_f1:',
      weighted_f1,'\nNone_f1:',None_f1)

输出结果:

macro_f1: 0.7222222222222222
micro_f1: 0.6666666666666666
weighted_f1: 0.6666666666666666
None_f1: [1.   0.66666667   0.5  ]

sklearn.metrics.precision_score官网链接

sklearn.metrics.precision_score — scikit-learn 1.1.1 documentation

sklearn.metrics.precision_score(y_true, y_pred, *, labels=None, pos_label=1, 
average='binary', sample_weight=None, zero_division='warn')

重要参数意义与f1-score类似

代码实例:

>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0.        , 0.        ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0.        , 0.        ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1.        , 1.        ])
>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> precision_score(y_true, y_pred, average=None)
array([0.5, 1. , 1. ])

sklearn.metrics.recall_score官网链接 

sklearn.metrics.recall_score — scikit-learn 1.1.1 documentation

sklearn.metrics.recall_score(y_true, y_pred, *, labels=None, pos_label=1, 
average='binary',sample_weight=None, zero_division='warn')

 重要参数意义与f1-score类似

代码实例:

>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])
>>> # multilabel classification
>>> y_true = [[0, 0, 0], [1, 1, 1], [0, 1, 1]]
>>> y_pred = [[0, 0, 0], [1, 1, 1], [1, 1, 0]]
>>> recall_score(y_true, y_pred, average=None)
array([1. , 1. , 0.5])

Accuracy、Precision、Recall和F1-score公式:

python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念

python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念

python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念

python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念

TP、FP、TN、FN的概念:

TP(True Positive):预测为正,预测结果是正确的

FP(False Positive):预测为正,预测结果是错误的

TN(True Negative):预测为负,预测结果是正确的

FN(False Negative):预测为负,预测结果是错误的

python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念文章来源地址https://www.toymoban.com/news/detail-424100.html

到了这里,关于python 中,sklearn包下的f1_score、precision、recall使用方法,Accuracy、Precision、Recall和F1-score公式,TP、FP、TN、FN的概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLO 模型的评估指标——IOU、Precision、Recall、F1-score、mAP

    YOLO是最先进的目标检测模型之一。目标检测问题相比分类问题要更加复杂,因为目标检测不仅要把类别预测正确,还要预测出这个类别具体在哪个位置。 我将目标识别的评估指标总结为两部分,一部分为预测框的预测指标,另一部分为分类预测指标。 预测框的准确率用IOU来

    2024年02月04日
    浏览(51)
  • 【计算机视觉 | 目标检测】术语理解3:Precision、Recall、F1-score、mAP、IoU 和 AP

    在图像目标检测中,常用的评估指标包括以下几项: 精确率(Precision):也称为查准率,表示被分类为正类别的样本中真正为正类别的比例。计算公式为:Precision = TP / (TP + FP),其中TP是真正例(模型正确预测为正类别的样本数),FP是假正例(模型错误预测为正类别的样本数

    2024年02月13日
    浏览(42)
  • 分类问题的评价指标(Precision、Recall、Accuracy、F1-Score、Micro-F1、Macro-F1)以及混淆矩阵、ROC曲线

    真阳性:预测为正,实际为正。把正样本 成功 预测为正。  TP ——True Positive 假阳性:预测为正,实际为负。把负样本 错误 预测为正。  FP ——False Positive  ——误报 真阴性:预测为负、实际为负。把负样本 成功 预测为负。  TN ——True Negative 假阴性:预测与负、实际

    2024年01月19日
    浏览(44)
  • 基于sklearn计算precision、recall等分类指标

    在前面的文章中,我们已经介绍了分类指标Precision,Recall,F1-Score的定义和计算公式:详解分类指标Precision,Recall,F1-Score 我们可以知道, 精度(precision)、查全率(recall)、F1的计算,是针对于二分类器来定义的。他们的计算,只与y_true和y_pred有关,要求y_true和y_pred中只含有0和

    2024年02月16日
    浏览(39)
  • 在分类任务中准确率(accuracy)、精确率(precision)、召回率(recall)和 F1 分数是常用的性能指标,如何在python中使用呢?

    在机器学习和数据科学中,准确率(accuracy)、精确率(precision)、召回率(recall)和 F1 分数是常用的性能指标,用于评估分类模型的性能。 准确率是模型预测正确的样本数占总样本数的比例。 精确率是指在预测为正的样本中,实际为正的比例。它关注的是预测为正的样本

    2024年01月19日
    浏览(51)
  • NLP NER 任务中的精确度(Precision)、召回率(Recall)和F1值

    在自然语言处理(NLP)中的命名实体识别(NER)任务中,精确度(Precision)、召回率(Recall)和F1值是评估模型性能的关键指标。这些指标帮助我们了解模型在识别正确实体方面的效率和准确性。 精确度(Precision) : 精确度是指模型正确识别的命名实体数与模型总共识别出

    2024年01月23日
    浏览(54)
  • 自我理解:精度(precision)和召回(recall)

    精度 是用于评估分类模型的一个重要指标。它反映了模型预测为正例的样本中,实际真正为正例样本的比例。 【注】正例样本指在二分类问题中,被标注为正类的样本。 例如:在垃圾邮件分类任务中,正例样本就是真实的垃圾邮件。 精度的计算公式 精度 = 正确预测为正例

    2024年02月12日
    浏览(27)
  • 机器学习系列(二)——评价指标Precision和Recall

    Precision 和 Recall 是常考的知识点,就其区别做一个详细总结 1. Precision  中文翻译 “精确率”,“查准率”。 “查准率”这个名字更能反应其特性,就是 该指标关注准确性。  计算公式如下: 这里TP,FP的概念来自统计学中的混淆矩阵,TP指 “预测为正(Positive), 预测正确(

    2024年02月16日
    浏览(42)
  • 目标检测评估指标mAP:从Precision,Recall,到AP50-95

    True Positive 满足以下三个条件被看做是TP         1. 置信度大于阈值(类别有阈值,IoU判断这个bouding box是否合适也有阈值)         2. 预测类型与标签类型相匹配(类别预测对了)         3. 预测的Bouding Box和Ground Truth的IoU大于阈值(框 打对了)。 当存在多个满足条件的预

    2024年02月09日
    浏览(40)
  • YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU

    开始讲解之前推荐一下我的专栏,本专栏的内容支持(分类、检测、分割、追踪、关键点检测),专栏目前为限时折扣, 欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。   专栏目录: YOLOv8改进有效系列目录 | 包含卷积、主

    2024年02月03日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包