Matlab作图多项式拟合

这篇具有很好参考价值的文章主要介绍了Matlab作图多项式拟合。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、拟合函数

polyfit(s,y,n)

polyval(p,x)

poly2str(p,' x ' )

二、拟合步骤

1.做原始数据的散点图

2.选择恰当的次数n,用polyfit指令求得多项式

3.计算多项式p在x处的值

4.画出多项式函数的曲线图

三、拟合实例

对x等于1-10,y大于20小于40的随机数进行多项式拟合

x=1:10;y=20+20*rand(1,10);%定义x,y

poly2str(p,'x');%求拟合系数

plot(x,y,'p');%画出散点图

py=polyval(p,x);hold on;plot(x,py);%polyval求对应x的y值,三次拟合作图

p=polyfit(x,y,4);%四次多项式拟合

py=polyval(p,x);hold on;plot(x,py,'r');%四次拟合作图

p=polyfit(x,y,5);%五次多项式拟合

py=polyval(p,x);hold on;plot(x,py,'b');%五次拟合作图

legend('0','3','4','5');%设置图例

拟合图:

Matlab作图多项式拟合

 由于y采用的随机数,拟合效果不是很好。文章来源地址https://www.toymoban.com/news/detail-424863.html

到了这里,关于Matlab作图多项式拟合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab 线性拟合、一维、多维度非线性拟合、多项式拟合

      线性拟合 我随便设定一个函数然后通过解方程计算出对应的系数 假设我的函数原型是 y=a*sin(0.1*x.^2+x)+b* squre(x+1)+c*x+d  拟合系数:   利用matlab实现非线性拟合(三维、高维、参数方程)_matlab多元非线性拟合_hyhhyh21的博客-CSDN博客 简单的一维的拟合: 思路: 将非线性-》线

    2024年02月12日
    浏览(48)
  • Python做曲线拟合(一元多项式拟合及任意函数拟合)

    目录 1. 一元多项式拟合 使用方法 np.polyfit(x, y, deg) 2. 任意函数拟合 使用 curve_fit() 方法 实例: (1)初始化 x 和 y 数据集 (2)建立自定义函数 (3)使用自定义的函数生成拟合函数绘图  polyfig 使用的是最小二乘法,用于拟合一元多项式函数。 参数说明: x 就是x坐标,

    2024年02月02日
    浏览(51)
  • MATLAB 利用RANSAC对多项式进行点拟合 (32)

    通过对给定的一小组点进行抽样并生成多项式拟合,得到多项式系数 P。返回 maxRange 中具有最多 inlier 值的拟合。如果找不到匹配,则返回空的 P。该函数使用 M 估计量样本一致性(MSAC)算法,一种随机样本一致性(RANSAC)算法的变体来拟合数据。 主要使用的函数和内部的参数含义

    2024年02月15日
    浏览(54)
  • numpy 多项式函数回归与插值拟合模型;ARIMA时间序列模型拟合

    参考: https://blog.csdn.net/mao_hui_fei/article/details/103821601 1、多项式函数回归拟合 x ^3+ x ^2… 2、多项式函数插值拟合 对于插值函数 interp1d(phone_time, phone_x, kind=‘cubic’),无法直接获取多项式的参数与具体函数表达式。这是因为该函数使用样条插值方法,它的内部实现是基于一组数

    2024年02月16日
    浏览(76)
  • 多项式拟合

    文章内容部分参考: 建模算法入门笔记-多项式拟合(附源码) - 哔哩哔哩 (bilibili.com) (9条消息) 数学建模——人口预测模型 公有木兮木恋白的博客-CSDN博客 数学建模人口预测模型 多项式拟合是数据拟合的一种,与插值有一定区别(插值要求曲线经过给定的点,拟合不一定经

    2024年02月04日
    浏览(54)
  • pytorch 欠拟合和过拟合 多项式回归

        训练误差和验证误差都有,还可能比较严重, 但它们之间仅有差距不大。 这个时候模型不能降低训练的误差,有可能是我们设计的模型简单了,表达能力不足, 捕获试图学习的模式比较难。由于我们的训练和验证误差之间的泛化误差很小, 这个时候我们认为可以用一

    2024年02月16日
    浏览(40)
  • 自动驾驶规划 - 5次多项式拟合

    自动驾驶运动规划中会用到各种曲线,主要用于生成车辆的轨迹,常见的轨迹生成算法, 如贝塞尔曲线,样条曲线,以及apollo EM Planner的五次多项式曲线 ,城市场景中使用的是分段多项式曲线,在 EM Planner和Lattice Planner 中思路是,都是先通过动态规划生成点,再用5次多项式

    2024年02月03日
    浏览(71)
  • 数学建模--多项式拟合方法Python实现

    目录    1.算法设计思路  2.算法核心代码  3.算法效果展示 1.算法设计思路  2.算法核心代码  3.算法效果展示

    2024年02月07日
    浏览(43)
  • 数学建模--非多项式拟合法的Python实现

    目录   1.算法异同区别   2.算法核心步骤   3.算法核心代码   4.算法效果展示 1.算法异同区别   2.算法核心步骤   3.算法核心代码   4.算法效果展示

    2024年02月09日
    浏览(35)
  • 使用R语言进行多项式回归、非线性回归模型曲线拟合

    对于线性关系,我们可以进行简单的线性回归。对于其他关系,我们可以尝试拟合一条曲线。 相关视频 曲线拟合是构建一条曲线或数学函数的过程,它对一系列数据点具有最佳的拟合效果。 使用示例数据集 看起来我们可以拟合一条曲线。 我们可以看到每条曲线的拟合程度

    2024年02月09日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包