交叉验证之KFold和StratifiedKFold的使用(附案例实战)

这篇具有很好参考价值的文章主要介绍了交叉验证之KFold和StratifiedKFold的使用(附案例实战)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


交叉验证之KFold和StratifiedKFold的使用(附案例实战)

 一、交叉验证简介

        交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。

  那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候。通常情况下,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型。如果样本大于一万条的话,我们一般随机的把数据分成三份,一份为训练集(Training Set),一份为验证集(Validation Set),最后一份为测试集(Test Set)。用训练集来训练模型,用验证集来评估模型预测的好坏和选择模型及其对应的参数。把最终得到的模型再用于测试集,最终决定使用哪个模型以及对应参数。

        学习预测函数的参数,并在相同数据集上进行测试是一种错误的做法: 一个仅给出测试用例标签的模型将会获得极高的分数,但对于尚未出现过的数据它则无法预测出任何有用的信息。 这种情况称为 overfitting(过拟合).。为了避免这种情况,在进行机器学习实验时,通常取出部分可利用数据作为 test set(测试数据集) X_test, y_test。下面是模型训练中典型的交叉验证工作流流程图。通过网格搜索可以确定最佳参数。

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

         k-折交叉验证得出的性能指标是循环计算中每个值的平均值。 该方法虽然计算代价很高,但是它不会浪费太多的数据(如固定任意测试集的情况一样), 在处理样本数据集较少的问题(例如,逆向推理)时比较有优势。

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

k-折交叉验证步骤

 文章来源地址https://www.toymoban.com/news/detail-424864.html

  • 第一步,不重复抽样将原始数据随机分为 k 份。
  • 第二步,每一次挑选其中 1 份作为测试集,剩余 k-1 份作为训练集用于模型训练。
  • 第三步,重复第二步 k 次,这样每个子集都有一次机会作为测试集,其余机会作为训练集。
  • 在每个训练集上训练后得到一个模型,
  • 用这个模型在相应的测试集上测试,计算并保存模型的评估指标,
  • 第四步,计算 k 组测试结果的平均值作为模型精度的估计,并作为当前 k 折交叉验证下模型的性能指标。
     

例如:

十折交叉验证

  • 将训练集分成十份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验。每次试验都会得出相应的正确率。
  • 10次的结果的正确率的平均值作为对算法精度的估计,一般还需要进行多次10折交叉验证(例如10次10折交叉验证),再求其均值,作为对算法准确性的估计
  • 模型训练过程的所有步骤,包括模型选择,特征选择等都是在单个折叠 fold 中独立执行的。
  • 此外:
    • 多次 k 折交叉验证再求均值,例如:10 次10 折交叉验证,以求更精确一点。
    • 数据量大时,k设置小一些 / 数据量小时,k设置大一些。
       

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

KFold和StratifiedKFold的使用

        StratifiedKFold用法类似Kfold,但是它是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。这一区别在于当遇到非平衡数据时,StratifiedKFold() 各个类别的比例大致和完整数据集中相同,若数据集有4个类别,比例是2:3:3:2,则划分后的样本比例约是2:3:3:2;但是KFold可能存在一种情况:数据集有5类,抽取出来的也正好是按照类别划分的5类,也就是说第一折全是0类,第二折全是1类等等,这样的结果就会导致模型训练时没有学习到测试集中数据的特点,从而导致模型得分很低,甚至为0。

 

Parameters

  • n_splits : int, default=3   也就是K折中的k值,必须大于等于2
  • shuffle : boolean  True表示打乱顺序,False反之
  • random_state :int,default=None 随机种子,如果设置值了,shuffle必须为True
# KFold
from sklearn.model_selection import KFold
kfolds = KFold(n_splits=3)
for train_index, test_index in kfolds.split(X,y):
    print('X_train:%s ' % X[train_index])
    print('X_test: %s ' % X[test_index])

# StratifiedKFold
from sklearn.model_selection import StratifiedKFold
skfold = StratifiedKFold(n_splits=3)
for train_index, test_index in skfold.split(X,y):
    print('X_train:%s ' % X[train_index])
    print('X_test: %s ' % X[test_index])

KFold和StratifiedKFold实战案例

首先导入数据集,本数据集为员工离职数据,属于二分类任务

import pandas as pd
import warnings
warnings.filterwarnings('ignore')

data = pd.read_excel('data.xlsx')
data['薪资情况'].replace(to_replace={'低':0,'中':1,'高':2},inplace=True)
data.head()

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

 拆分数据集为训练集和测试集,测试集比例为0.2

from sklearn.model_selection import train_test_split
X = data.drop('是否离职',axis=1)
y = data['是否离职']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)

初始化一个分类模型,这里用逻辑回归模型举例。方法1使用cross_val_score()可以直接得到k折训练的模型效果,比如下面使用3折进行训练,得分评估使用准确率,关于scoring这个参数我会在文末介绍。

# 初始化一个分类模型,比如逻辑回归
from sklearn.linear_model import LogisticRegression
lg = LogisticRegression()
# 方法1
from sklearn.model_selection import cross_val_score
scores = cross_val_score(lg,X_train,y_train,cv=3,scoring='accuracy')
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

 接下来分别使用KFold和StratifiedKFold,其实两者代码非常类似,只是前面的方法不同。

KFold

# 方法2-KFold和StratifiedKFold
import numpy as np
from sklearn.model_selection import KFold,StratifiedKFold
from sklearn.metrics import accuracy_score,recall_score,f1_score
# KFold
kfolds = KFold(n_splits=3)
accuracy_score_list,recall_score_list,f1_score_list = [],[],[]
for train_index,test_index in kfolds.split(X_train,y_train):
    # 准备交叉验证的数据
    X_train_fold = X_train.iloc[train_index]
    y_train_fold = y_train.iloc[train_index]
    X_test_fold = X_train.iloc[test_index]
    y_test_fold = y_train.iloc[test_index]
    # 训练模型
    lg.fit(X_train_fold,y_train_fold)
    y_pred = lg.predict(X_test_fold)
    # 评估模型
    AccuracyScore = accuracy_score(y_test_fold,y_pred)
    RecallScore = recall_score(y_test_fold,y_pred)
    F1Score = f1_score(y_test_fold,y_pred)
    # 将评估指标存放对应的列表中
    accuracy_score_list.append(AccuracyScore)
    recall_score_list.append(RecallScore)
    f1_score_list.append(F1Score)
    # 打印每一次训练的正确率、召回率、F1值
    print('accuracy_score:',AccuracyScore,'recall_score:',RecallScore,'f1_score:',F1Score)
# 打印各指标的平均值和95%的置信区间
print("Accuracy: %0.2f (+/- %0.2f)" % (np.average(accuracy_score_list), np.std(accuracy_score_list) * 2))
print("Recall: %0.2f (+/- %0.2f)" % (np.average(recall_score_list), np.std(recall_score_list) * 2))
print("F1_score: %0.2f (+/- %0.2f)" % (np.average(f1_score_list), np.std(f1_score_list) * 2))

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

StratifiedKFold

# StratifiedKFold
skfolds = StratifiedKFold(n_splits=3)
accuracy_score_list,recall_score_list,f1_score_list = [],[],[]
for train_index,test_index in skfolds.split(X_train,y_train):
    # 准备交叉验证的数据
    X_train_fold = X_train.iloc[train_index]
    y_train_fold = y_train.iloc[train_index]
    X_test_fold = X_train.iloc[test_index]
    y_test_fold = y_train.iloc[test_index]
    # 训练模型
    lg.fit(X_train_fold,y_train_fold)
    y_pred = lg.predict(X_test_fold)
    # 评估模型
    AccuracyScore = accuracy_score(y_test_fold,y_pred)
    RecallScore = recall_score(y_test_fold,y_pred)
    F1Score = f1_score(y_test_fold,y_pred)
    # 将评估指标存放对应的列表中
    accuracy_score_list.append(AccuracyScore)
    recall_score_list.append(RecallScore)
    f1_score_list.append(F1Score)
    # 打印每一次训练的正确率、召回率、F1值
    print('accuracy_score:',AccuracyScore,'recall_score:',RecallScore,'f1_score:',F1Score)
# 打印各指标的平均值和95%的置信区间
print("Accuracy: %0.2f (+/- %0.2f)" % (np.average(accuracy_score_list), np.std(accuracy_score_list) * 2))
print("Recall: %0.2f (+/- %0.2f)" % (np.average(recall_score_list), np.std(recall_score_list) * 2))
print("F1_score: %0.2f (+/- %0.2f)" % (np.average(f1_score_list), np.std(f1_score_list) * 2))

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

补充

scoring 参数: 定义模型评估规则

Model selection (模型选择)和 evaluation (评估)使用工具,例如 model_selection.GridSearchCV 和 model_selection.cross_val_score ,采用 scoring 参数来控制它们对 estimators evaluated (评估的估计量)应用的指标。

常见场景: 预定义值

        对于最常见的用例, 可以使用 scoring 参数指定一个 scorer object (记分对象); 下表显示了所有可能的值。 所有 scorer objects (记分对象)遵循惯例 higher return values are better than lower return values(较高的返回值优于较低的返回值)。因此,测量模型和数据之间距离的 metrics (度量),如 metrics.mean_squared_error 可用作返回 metric (指数)的 negated value (否定值)的 neg_mean_squared_error 。

Scoring(得分) Function(函数) Comment(注解)
Classification(分类)    
‘accuracy’ metrics.accuracy_score  
‘average_precision’ metrics.average_precision_score  
‘f1’ metrics.f1_score for binary targets(用于二进制目标)
‘f1_micro’ metrics.f1_score micro-averaged(微平均)
‘f1_macro’ metrics.f1_score macro-averaged(宏平均)
‘f1_weighted’ metrics.f1_score weighted average(加权平均)
‘f1_samples’ metrics.f1_score by multilabel sample(通过 multilabel 样本)
‘neg_log_loss’ metrics.log_loss requires predict_proba support(需要 predict_proba 支持)
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’(后缀适用于 ‘f1’)
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’(后缀适用于 ‘f1’)
‘roc_auc’ metrics.roc_auc_score  
Clustering(聚类)    
‘adjusted_mutual_info_score’ metrics.adjusted_mutual_info_score  
‘adjusted_rand_score’ metrics.adjusted_rand_score  
‘completeness_score’ metrics.completeness_score  
‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score  
‘homogeneity_score’ metrics.homogeneity_score  
‘mutual_info_score’ metrics.mutual_info_score  
‘normalized_mutual_info_score’ metrics.normalized_mutual_info_score  
‘v_measure_score’ metrics.v_measure_score  
Regression(回归)    
‘explained_variance’ metrics.explained_variance_score  
‘neg_mean_absolute_error’ metrics.mean_absolute_error  
‘neg_mean_squared_error’ metrics.mean_squared_error  
‘neg_mean_squared_log_error’ metrics.mean_squared_log_error  
‘neg_median_absolute_error’ metrics.median_absolute_error  
‘r2’ metrics.r2_score

 

到了这里,关于交叉验证之KFold和StratifiedKFold的使用(附案例实战)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用sklearn函数对模型进行交叉验证

    交叉验证(Cross-Validatio),是用于在驯良过程中对训练模型的性能和参数进行评估选择的技术。 它的意义在于能够充分利用优先的数据集,减少数据分布不均匀以及随机性带来的模型评估误差。 交叉验证的作用就是将数据集分割成多个自己进行多次训练,每次训练的训练集

    2024年02月12日
    浏览(35)
  • R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证

    美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。 地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 既往咱们通过多篇文章对复杂加权数据的线性模型、逻辑回归模型、生存分析

    2024年02月06日
    浏览(39)
  • 机器学习技术:如何使用交叉验证和ROC曲线提高疾病预测的准确性和效率?

    随着机器学习的普及,评估模型的性能越来越重要。交叉验证和ROC曲线是两种常见的评估模型性能的方法。本文将介绍这两种方法的基本原理和应用场景,并结合实际案例和技术实践,讲解如何使用交叉验证和ROC曲线来提高机器学习模型的性能。此外,文章也将提供一些最佳

    2024年02月11日
    浏览(61)
  • opencv 案例实战02-停车场车牌识别SVM模型训练及验证

    1. 整个识别的流程图: 2. 车牌定位中分割流程图: 三、车牌识别中字符分割流程图: 下载车牌相关字符样本用于训练和测试,本文使用14个汉字样本和34个数字跟字母样本,每个字符样本数为40,样本尺寸为28*28。 数据集下载地址 https://download.csdn.net/download/hai411741962/88248392

    2024年02月11日
    浏览(37)
  • 【AI机器学习入门与实战】CNN卷积神经网络识别图片验证码案例

    👍【 AI机器学习入门与实战 】目录 🍭 基础篇 🔥 第一篇:【AI机器学习入门与实战】AI 人工智能介绍 🔥 第二篇:【AI机器学习入门与实战】机器学习核心概念理解 🔥 第三篇:【AI机器学习入门与实战】机器学习算法都有哪些分类? 🔥 第四篇:【AI机器学习入门与实战】

    2024年02月02日
    浏览(64)
  • 【使用 k 折叠交叉验证的卷积神经网络(CNN)】基于卷积神经网络的无特征EMG模式识别研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来源

    2024年02月11日
    浏览(43)
  • 【深度学习】实验04 交叉验证

    交叉验证是一种评估和选择机器学习模型性能的常用方法。它将数据集划分为训练集和验证集,并重复多次进行模型训练和性能评估,以获取更稳定和可靠的模型评估结果。 1.自定义划分 2.K折交叉验证 K-fold交叉验证是一种经典的模型选择方法,它主要用于评估机器学习模型

    2024年02月11日
    浏览(42)
  • 机器学习入门教学——交叉验证

    1、简介 交叉验证是在机器学习 建立模型和验证模型参数 时常用的办法,一般被用于评估一个机器学习模型的表现。更多的情况下,我们也用交叉验证来进行模型选择。 【注】在训练模型时,为了提高模型的质量,我们会将数据集划分为训练集、验证集和测试集。其中测试

    2024年02月09日
    浏览(42)
  • 【笔记】【机器学习基础】交叉验证

    交叉验证(cross-validation) 是一种 评估泛化性能 的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。在交叉验证中,数据被多次划分,并且需要训练多个模型。 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation) ,其中 k 是由用户指定的数字,通常取

    2024年02月03日
    浏览(37)
  • 深度学习:交叉验证(Cross Validation)

    首先,交叉验证的目的是为了让被评估的模型达到最优的泛化性能,找到使得模型泛化性能最优的超参值。在全部训练集上重新训练模型,并使用独立测试集对模型性能做出最终评价。 目前在一些论文里倒是没有特别强调这样的操作,很多研究使用的都是第一种:简单交叉验

    2024年02月02日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包