Numpy从入门到精通——存读矩阵以及读取矩阵中的数据

这篇具有很好参考价值的文章主要介绍了Numpy从入门到精通——存读矩阵以及读取矩阵中的数据。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这个专栏名为《Numpy从入门到精通》,顾名思义,是记录自己学习numpy的学习过程,也方便自己之后复盘!为深度学习的进一步学习奠定基础!希望能给大家带来帮助,爱睡觉的咋祝您生活愉快! 这一篇介绍《Numpy从入门到精通——存读矩阵以及读取矩阵中的数据

Numpy从入门到精通——存读矩阵以及读取矩阵中的数据

一、利用savetxt、loadtxt存读矩阵

在np中也提供了能直接将矩阵存储成txt文件的函数,以及将txt文件读取成为矩阵的函数loadtxt,下面我们将详细介绍这两个函数:

函数 说明
savetxt 将np.ndarray存储在txt文件中
loadtxt txt文件中的矩阵读取到np.ndarray中

通过savetxt存储矩阵,通过loadtxt读取矩阵:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :numpy学习 
@File    :task_8.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/4/17 16:45 
"""
import numpy as np
array_1 = np.random.random([5,5]) # 创建一个5x5的矩阵
print(array_1)
# 保存矩阵
np.savetxt(X=array_1,fname="test.txt")
array_2= np.loadtxt("test.txt")
print(array_2)

输出为:

[[0.55288088 0.77184344 0.8309328  0.55396012 0.62182447]
 [0.76018218 0.75927817 0.6210175  0.35243527 0.23502823]
 [0.80056504 0.33167949 0.21276266 0.28230738 0.93320109]
 [0.28639089 0.78890919 0.42325923 0.3815833  0.71751376]
 [0.72839721 0.45384038 0.4945789  0.36863601 0.21875081]]
[[0.55288088 0.77184344 0.8309328  0.55396012 0.62182447]
 [0.76018218 0.75927817 0.6210175  0.35243527 0.23502823]
 [0.80056504 0.33167949 0.21276266 0.28230738 0.93320109]
 [0.28639089 0.78890919 0.42325923 0.3815833  0.71751376]
 [0.72839721 0.45384038 0.4945789  0.36863601 0.21875081]]

txt中的文件为:

Numpy从入门到精通——存读矩阵以及读取矩阵中的数据

可以看到np能够成功将矩阵存储到txt文件中,也能够将txt中的文件读取到程序中。

二、读取维度为1的矩阵数据

在上一篇中,我们主要介绍了np生成矩阵,当生成了矩阵之后,我们应该怎么去读取我们需要的数据呢?接下来通过一段代码介绍一下几种常用的获取ndarray中的数据的方法:
创建一个维度为1的矩阵,用于后面的实验:

@Project :numpy学习 
@File    :task_9.py
@IDE     :PyCharm 
@Author  :咋
@Date2023/4/17 17:04 
"""
import numpy as np
np.random.seed(2023)
array_1 = np.random.random([10])
print(array_1)

输出:

[0.3219883  0.89042245 0.58805226 0.12659609 0.14134122 0.46789559
 0.02208966 0.72727471 0.52438734 0.54493524]

2.1 获取指定位置的数据

#获取指定位置的数据,获取第4个元素
print(array_1[3])

输出:

0.12659609350429124

2.2截取一段数据

print(array_1[3:6])

输出:

[0.12659609 0.14134122 0.46789559]

2.3间隔取数据

#截取固定间隔数据
print(array_1[1:6:2])

输出:

[0.89042245 0.12659609 0.46789559]

2.4倒序取数

#倒序取数
print(array_1[::-2])

输出:

[0.54493524 0.72727471 0.46789559 0.12659609 0.89042245]

三、读取多维矩阵数据

我们以维度为2的矩阵举例,其他高维矩阵也是类似的,首先创建一个维度为2的矩阵用以后面的实验:

array_2=np.arange(25).reshape([5, 5])
print(array_2)

输出:

[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]

3.1截取一个多维数组的一个区域内数据

print(array_2[1:3, 1:3])

输出:

[[ 6  7]
 [11 12]]

3.2截取一个多维数组中,数值在一个值域之内的数据

print(array_2[(array_2 > 3) & (array_2 < 10)])

输出:

[4 5 6 7 8 9]

3.3指定的行截取多维数组

print(array_2[[1, 2]])

输出:

[[ 5  6  7  8  9]
 [10 11 12 13 14]]

3.4指定的列截取多维数组

print(array_2[:, 1:3])

输出:

[[ 1  2]
 [ 6  7]
 [11 12]
 [16 17]
 [21 22]]

这个索引与python里面的range所有非常相似,由start,end和step组成,注意end不包括

四、choice函数抽取数据

除了用上述办法通过索引来提取元素,我们还可以通过choice函数来从目标矩阵中随机提取数据:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :numpy学习 
@File    :task_10.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/4/17 17:29 
"""
import numpy as np
from numpy import random as nr
a = np.arange(1, 25, dtype=float)
c1 = nr.choice(a, size=(3, 4))  # size指定输出数组形状
c2 = nr.choice(a, size=(3, 4), replace=False)  # replace默认为True,即可重复抽取。
# 下式中参数p指定每个元素对应的抽取概率,默认为每个元素被抽取的概率相同。
c3 = nr.choice(a, size=(3, 4), p=a / np.sum(a))
print("随机可重复抽取")
print(c1)
print("随机但不重复抽取")
print(c2)
print("随机但按制度概率抽取")
print(c3)

输出:

D:\anaconda\python.exe D:/桌面/numpy学习/task_10.py
300.0
随机可重复抽取
[[14. 22. 20. 11.]
 [ 6. 18. 15. 21.]
 [ 3. 19. 23.  3.]]
随机但不重复抽取
[[ 6. 17. 13. 24.]
 [ 5. 20. 19. 12.]
 [10.  2. 21. 23.]]
随机但按制度概率抽取
[[19. 18. 24. 11.]
 [ 5.  7. 11. 20.]
 [10. 15. 16. 20.]]

前两个都好解释,size是抽取的矩阵大小,replace是能不能重复抽取,我们重点说一下参数p,也就是抽取的概率。这里 p=a / np.sum(a),也就是数值越大,抽到的概率越高。
Numpy从入门到精通——存读矩阵以及读取矩阵中的数据文章来源地址https://www.toymoban.com/news/detail-424895.html

到了这里,关于Numpy从入门到精通——存读矩阵以及读取矩阵中的数据的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 系统学习Numpy(一)——numpy的安装与基础入门[向量、矩阵]

    系统学习Numpy(一)——numpy的安装与基础入门[向量、矩阵]

    numpy的安装与基础入门[向量、矩阵与维度] numpy是科学计算以及机器学习深度学习的基础必备工具,本文将介绍numpy的安装,以及关于向量、矩阵相关的基础知识。 在conda下使用 conda install numpy 安装。 如果没有conda可以使用 pip install numpy 安装。 我们将使用 import numpy as np 对nu

    2024年02月16日
    浏览(8)
  • PIL,cv2读取类型及转换,以及PIL,numpy,tensor格式以及cuda,cpu的格式转换

    PIL,cv2读取类型及转换,以及PIL,numpy,tensor格式以及cuda,cpu的格式转换

    这里先列个表格方便理解清楚: cv2 PIL 读取 a=cv2.imread() a=Image.open() 读取类型 数组类型 PIL类型 读取颜色通道 BGR RGB(这里需要注意的是当图像格式为RGBA时,PIL读取的是RGBA) 读取尺寸排列 (H,W,C) (W,H,C) 显示图片 cv2.imshow(“a”, a) cv2.waitKey (0) a.show() 相互之间转换显示 Ima

    2024年02月03日
    浏览(10)
  • python 读取xml从入门到精通

    python 读取xml从入门到精通

      XML (Extensible Markup Language),可扩展标记语言,是一种被广泛应用于网络上的文件格式。在互联网上,网页里的信息都以 XML格式存储,例如 HTML、 CSV、 JSON等。随着电子商务的发展,人们需要在 Web页面上传递各种信息,因而需要一个简单的 XML文件来承载这些信息。由于

    2024年02月06日
    浏览(7)
  • 100天精通Golang(基础入门篇)——第5天: Go语言中的数据类型学习

    100天精通Golang(基础入门篇)——第5天: Go语言中的数据类型学习

    🌷 博主 libin9iOak带您 Go to Golang Language.✨ 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《IDEA开发秘籍》学会IDEA常用操作,工作效率翻倍~💐 🪁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批

    2024年02月08日
    浏览(10)
  • 协方差矩阵在torch和numpy中的比较,自行实现torch协方差矩阵

    数学中(教科书、大学课堂、数学相关的科普视频),一个矩阵的向量往往是竖着的, 一列作为一个vector ,这一点numpy库也是这样默认的。 但是在机器学习以torch框架为例,一个有意义的向量或者说embedding 是横着的 。 因为numpy库默认是一列是一个向量而torch等机器学习框架

    2023年04月08日
    浏览(14)
  • opencv入门到精通——图片,视频,摄像头的读取与保存

    opencv入门到精通——图片,视频,摄像头的读取与保存

    OpenCV是一个流行的开源计算机视觉库,由英特尔公司发起发展。它提供了超过2500个优化算法和许多工具包,可用于灰度、彩色、深度、基于特征和运动跟踪等的图像处理和计算机视觉应用。OpenCV主要使用C++语言编写,同时也支持Python、Java、C等语言。由于其开源和广泛使用的

    2024年02月08日
    浏览(10)
  • SLAM从入门到精通(矩阵的使用)

    SLAM从入门到精通(矩阵的使用)

    【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】         学习SLAM,离开了矩阵肯定是玩不转的。大学数学里面除了微积分,剩下的就是线性代数和概率论。而矩阵就是线性代数的一部分。到了研究生,高等数学不学了,但是会继续学习矩阵

    2024年02月10日
    浏览(9)
  • 【100天精通Python】Day53:Python 数据分析_NumPy数据操作和分析进阶

    目录 1. 广播  2 文件输入和输出 3 随机数生成 4 线性代数操作  5 进阶操作

    2024年02月09日
    浏览(42)
  • OpenCV从入门到精通(一) ——OpenCV简介、模块、常用函数、图像视频读取显示保存

    OpenCV从入门到精通(一) ——OpenCV简介、模块、常用函数、图像视频读取显示保存

    说明:关于OpenCV的教程和书籍已经很多了,所以,我不想重复别人已经做过的事情。如何系统全面的掌握OpenCV?我想这是每个学习OpenCV的人都想要做到的事情。说到底,OpenCV只是一个数字图像处理函数库,要全面掌握OpenCV的使用,只需要明白有哪些函数,每个函数怎么使用。

    2024年02月07日
    浏览(9)
  • Iceberg从入门到精通系列之十一:Flink DataStream读取Iceberg表

    streaming(false) :false batch方式 streaming(true):true streaming方式

    2024年02月12日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包