FPGA、 CPU、GPU、ASIC区别

这篇具有很好参考价值的文章主要介绍了FPGA、 CPU、GPU、ASIC区别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、为什么使用 FPGA?

众所周知,通用处理器(CPU)的摩尔定律已入暮年,而机器学习和 Web 服务的规模却在指数级增长。

人们使用定制硬件来加速常见的计算任务,然而日新月异的行业又要求这些定制的硬件可被重新编程来执行新类型的计算任务。

FPGA 正是一种硬件可重构的体系结构。它的英文全称是Field Programmable Gate Array,中文名是现场可编程门阵列。

FPGA常年来被用作专用芯片(ASIC)的小批量替代品,然而近年来在微软、百度等公司的数据中心大规模部署,以同时提供强大的计算能力和足够的灵活性。

FPGA、 CPU、GPU、ASIC区别

不同体系结构性能和灵活性的比较

FPGA 为什么快?「都是同行衬托得好」。

CPU、GPU 都属于冯·诺依曼结构,指令译码执行、共享内存。FPGA 之所以比 CPU 甚至 GPU 能效高,本质上是无指令、无需共享内存的体系结构带来的福利。 

冯氏结构中,由于执行单元(如 CPU 核)可能执行任意指令,就需要有指令存储器、译码器、各种指令的运算器、分支跳转处理逻辑。由于指令流的控制逻辑复杂,不可能有太多条独立的指令流,因此 GPU 使用 SIMD(单指令流多数据流)来让多个执行单元以同样的步调处理不同的数据,CPU 也支持 SIMD 指令。

而 FPGA 每个逻辑单元的功能在重编程(烧写)时就已经确定,不需要指令。

冯氏结构中使用内存有两种作用。一是保存状态,二是在执行单元间通信。

由于内存是共享的,就需要做访问仲裁;为了利用访问局部性,每个执行单元有一个私有的缓存,这就要维持执行部件间缓存的一致性。

对于保存状态的需求,FPGA 中的寄存器和片上内存(BRAM)是属于各自的控制逻辑的,无需不必要的仲裁和缓存。

对于通信的需求,FPGA 每个逻辑单元与周围逻辑单元的连接在重编程(烧写)时就已经确定,并不需要通过共享内存来通信。


说了这么多三千英尺高度的话,FPGA 实际的表现如何呢?我们分别来看计算密集型任务和通信密集型任务。

计算密集型任务的例子包括矩阵运算、图像处理、机器学习、压缩、非对称加密、Bing 搜索的排序等。这类任务一般是 CPU 把任务卸载(offload)给 FPGA 去执行。对这类任务,目前我们正在用的 Altera(似乎应该叫 Intel 了,我还是习惯叫 Altera……)Stratix V FPGA 的整数乘法运算性能与 20 核的 CPU 基本相当,浮点乘法运算性能与 8 核的 CPU 基本相当,而比 GPU 低一个数量级。我们即将用上的下一代 FPGA,Stratix 10,将配备更多的乘法器和硬件浮点运算部件,从而理论上可达到与现在的顶级 GPU 计算卡旗鼓相当的计算能力。

FPGA、 CPU、GPU、ASIC区别

FPGA 的整数乘法运算能力(估计值,不使用 DSP,根据逻辑资源占用量估计)。

FPGA、 CPU、GPU、ASIC区别

FPGA 的浮点乘法运算能力(估计值,float16 用软核,float 32 用硬核) 。

在数据中心,FPGA 相比 GPU 的核心优势在于延迟。

像 Bing 搜索排序这样的任务,要尽可能快地返回搜索结果,就需要尽可能降低每一步的延迟。 

如果使用 GPU 来加速,要想充分利用 GPU 的计算能力,batch size 就不能太小,延迟将高达毫秒量级。 

使用 FPGA 来加速的话,只需要微秒级的 PCIe 延迟(我们现在的 FPGA 是作为一块 PCIe 加速卡)。

未来 Intel 推出通过 QPI 连接的 Xeon + FPGA 之后,CPU 和 FPGA 之间的延迟更可以降到 100 纳秒以下,跟访问主存没什么区别了。

FPGA 为什么比 GPU 的延迟低这么多? 

这本质上是体系结构的区别。

FPGA 同时拥有流水线并行和数据并行,而 GPU 几乎只有数据并行(流水线深度受限)。 

例如处理一个数据包有 10 个步骤,FPGA 可以搭建一个 10 级流水线,流水线的不同级在处理不同的数据包,每个数据包流经 10 级之后处理完成。每处理完成一个数据包,就能马上输出。

而 GPU 的数据并行方法是做 10 个计算单元,每个计算单元也在处理不同的数据包,然而所有的计算单元必须按照统一的步调,做相同的事情(SIMD,Single Instruction Multiple Data)。这就要求 10 个数据包必须一起输入、一起输出,输入输出的延迟增加了。 

当任务是逐个而非成批到达的时候,流水线并行比数据并行可实现更低的延迟。因此对流式计算的任务,FPGA 比 GPU 天生有延迟方面的优势。

FPGA、 CPU、GPU、ASIC区别

计算密集型任务,CPU、GPU、FPGA、ASIC 的数量级比较(以 16 位整数乘法为例,数字仅为数量级的估计。

ASIC 专用芯片在吞吐量、延迟和功耗三方面都无可指摘,但微软并没有采用,出于两个原因:

  • 数据中心的计算任务是灵活多变的,而 ASIC 研发成本高、周期长。好不容易大规模部署了一批某种神经网络的加速卡,结果另一种神经网络更火了,钱就白费了。FPGA 只需要几百毫秒就可以更新逻辑功能。FPGA 的灵活性可以保护投资,事实上,微软现在的 FPGA 玩法与最初的设想大不相同。

  • 数据中心是租给不同的租户使用的,如果有的机器上有神经网络加速卡,有的机器上有 Bing 搜索加速卡,有的机器上有网络虚拟化加速卡,任务的调度和服务器的运维会很麻烦。使用 FPGA 可以保持数据中心的同构性。 

接下来看通信密集型任务。

相比计算密集型任务,通信密集型任务对每个输入数据的处理不甚复杂,基本上简单算算就输出了,这时通信往往会成为瓶颈。对称加密、防火墙、网络虚拟化都是通信密集型的例子。

FPGA、 CPU、GPU、ASIC区别

通信密集型任务,CPU、GPU、FPGA、ASIC 的数量级比较(以 64 字节网络数据包处理为例,数字仅为数量级的估计)

对通信密集型任务,FPGA 相比 CPU、GPU 的优势就更大了。

从吞吐量上讲,FPGA 上的收发器可以直接接上 40 Gbps 甚至 100 Gbps 的网线,以线速处理任意大小的数据包;而 CPU 需要从网卡把数据包收上来才能处理,很多网卡是不能线速处理 64 字节的小数据包的。尽管可以通过插多块网卡来达到高性能,但 CPU 和主板支持的 PCIe 插槽数量往往有限,而且网卡、交换机本身也价格不菲。

从延迟上讲,网卡把数据包收到 CPU,CPU 再发给网卡,即使使用 DPDK 这样高性能的数据包处理框架,延迟也有 4~5 微秒。更严重的问题是,通用 CPU 的延迟不够稳定。例如当负载较高时,转发延迟可能升到几十微秒甚至更高(如下图所示);现代操作系统中的时钟中断和任务调度也增加了延迟的不确定性。

FPGA、 CPU、GPU、ASIC区别

ClickNP(FPGA)与 Dell S6000 交换机(商用交换机芯片)、Click+DPDK(CPU)和 Linux(CPU)的转发延迟比较,error bar 表示 5% 和 95%。

虽然 GPU 也可以高性能处理数据包,但 GPU 是没有网口的,意味着需要首先把数据包由网卡收上来,再让 GPU 去做处理。这样吞吐量受到 CPU 和/或网卡的限制。GPU 本身的延迟就更不必说了。

那么为什么不把这些网络功能做进网卡,或者使用可编程交换机呢?ASIC 的灵活性仍然是硬伤。

尽管目前有越来越强大的可编程交换机芯片,比如支持 P4 语言的 Tofino,ASIC 仍然不能做复杂的有状态处理,比如某种自定义的加密算法。

综上,在数据中心里 FPGA 的主要优势是稳定又极低的延迟,适用于流式的计算密集型任务和通信密集型任务。


二、微软部署 FPGA 的实践

2016 年 9 月,《连线》(Wired)杂志发表了一篇《微软把未来押注在 FPGA 上》的报道 [3],讲述了 Catapult 项目的前世今生。

紧接着,Catapult 项目的老大 Doug Burger 在 Ignite 2016 大会上与微软 CEO Satya Nadella 一起做了 FPGA 加速机器翻译的演示。 

演示的总计算能力是 103 万 T ops,也就是 1.03 Exa-op,相当于 10 万块顶级 GPU 计算卡。一块 FPGA(加上板上内存和网络接口等)的功耗大约是 30 W,仅增加了整个服务器功耗的十分之一。

Ignite 2016 上的演示:每秒 1 Exa-op (10^18) 的机器翻译运算能力。

微软部署 FPGA 并不是一帆风顺的。对于把 FPGA 部署在哪里这个问题,大致经历了三个阶段:

  • 专用的 FPGA 集群,里面插满了 FPGA

  • 每台机器一块 FPGA,采用专用网络连接

  • 每台机器一块 FPGA,放在网卡和交换机之间,共享服务器网络

FPGA、 CPU、GPU、ASIC区别

微软 FPGA 部署方式的三个阶段。

第一个阶段是专用集群,里面插满了 FPGA 加速卡,就像是一个 FPGA 组成的超级计算机。

下图是最早的 BFB 实验板,一块 PCIe 卡上放了 6 块 FPGA,每台 1U 服务器上又插了 4 块 PCIe 卡。

FPGA、 CPU、GPU、ASIC区别

最早的 BFB 实验板,上面放了 6 块 FPGA。

可以注意到该公司的名字。在半导体行业,只要批量足够大,芯片的价格都将趋向于沙子的价格。据传闻,正是由于该公司不肯给「沙子的价格」 ,才选择了另一家公司。

当然现在数据中心领域用两家公司 FPGA 的都有。只要规模足够大,对 FPGA 价格过高的担心将是不必要的。

最早的 BFB 实验板,1U 服务器上插了 4 块 FPGA 卡。

像超级计算机一样的部署方式,意味着有专门的一个机柜全是上图这种装了 24 块 FPGA 的服务器(下图左)。

 这种方式有几个问题:

  • 不同机器的 FPGA 之间无法通信,FPGA 所能处理问题的规模受限于单台服务器上 FPGA 的数量;

  • 数据中心里的其他机器要把任务集中发到这个机柜,构成了 in-cast,网络延迟很难做到稳定。

  • FPGA 专用机柜构成了单点故障,只要它一坏,谁都别想加速了;

  • 装 FPGA 的服务器是定制的,冷却、运维都增加了麻烦。

FPGA、 CPU、GPU、ASIC区别

部署 FPGA 的三种方式,从中心化到分布式。

一种不那么激进的方式是,在每个机柜一面部署一台装满 FPGA 的服务器(上图中)。这避免了上述问题 (2)(3),但 (1)(4) 仍然没有解决。

第二个阶段,为了保证数据中心中服务器的同构性(这也是不用 ASIC 的一个重要原因),在每台服务器上插一块 FPGA(上图右),FPGA 之间通过专用网络连接。这也是微软在 ISCA'14 上所发表论文采用的部署方式。

FPGA、 CPU、GPU、ASIC区别

Open Compute Server 在机架中。

FPGA、 CPU、GPU、ASIC区别

Open Compute Server 内景。红框是放 FPGA 的位置。

FPGA、 CPU、GPU、ASIC区别

插入 FPGA 后的 Open Compute Server。

FPGA、 CPU、GPU、ASIC区别

FPGA 与 Open Compute Server 之间的连接与固定。

FPGA 采用 Stratix V D5,有 172K 个 ALM,2014 个 M20K 片上内存,1590 个 DSP。板上有一个 8GB DDR3-1333 内存,一个 PCIe Gen3 x8 接口,两个 10 Gbps 网络接口。一个机柜之间的 FPGA 采用专用网络连接,一组 10G 网口 8 个一组连成环,另一组 10G 网口 6 个一组连成环,不使用交换机。

FPGA、 CPU、GPU、ASIC区别

机柜中 FPGA 之间的网络连接方式。

这样一个 1632 台服务器、1632 块 FPGA 的集群,把 Bing 的搜索结果排序整体性能提高到了 2 倍(换言之,节省了一半的服务器)。

如下图所示,每 8 块 FPGA 穿成一条链,中间用前面提到的 10 Gbps 专用网线来通信。这 8 块 FPGA 各司其职,有的负责从文档中提取特征(黄色),有的负责计算特征表达式(绿色),有的负责计算文档的得分(红色)。

FPGA、 CPU、GPU、ASIC区别

FPGA 加速 Bing 的搜索排序过程。

FPGA、 CPU、GPU、ASIC区别

FPGA 不仅降低了 Bing 搜索的延迟,还显著提高了延迟的稳定性。

FPGA、 CPU、GPU、ASIC区别

本地和远程的 FPGA 均可以降低搜索延迟,远程 FPGA 的通信延迟相比搜索延迟可忽略。

FPGA 在 Bing 的部署取得了成功,Catapult 项目继续在公司内扩张。

微软内部拥有最多服务器的,就是云计算 Azure 部门了。

Azure 部门急需解决的问题是网络和存储虚拟化带来的开销。Azure 把虚拟机卖给客户,需要给虚拟机的网络提供防火墙、负载均衡、隧道、NAT 等网络功能。由于云存储的物理存储跟计算节点是分离的,需要把数据从存储节点通过网络搬运过来,还要进行压缩和加密。

在 1 Gbps 网络和机械硬盘的时代,网络和存储虚拟化的 CPU 开销不值一提。随着网络和存储速度越来越快,网络上了 40 Gbps,一块 SSD 的吞吐量也能到 1 GB/s,CPU 渐渐变得力不从心了。

例如 Hyper-V 虚拟交换机只能处理 25 Gbps 左右的流量,不能达到 40 Gbps 线速,当数据包较小时性能更差;AES-256 加密和 SHA-1 签名,每个 CPU 核只能处理 100 MB/s,只是一块 SSD 吞吐量的十分之一。

网络隧道协议、防火墙处理 40 Gbps 需要的 CPU 核数。

为了加速网络功能和存储虚拟化,微软把 FPGA 部署在网卡和交换机之间。

如下图所示,每个 FPGA 有一个 4 GB DDR3-1333 DRAM,通过两个 PCIe Gen3 x8 接口连接到一个 CPU socket(物理上是 PCIe Gen3 x16 接口,因为 FPGA 没有 x16 的硬核,逻辑上当成两个 x8 的用)。物理网卡(NIC)就是普通的 40 Gbps 网卡,仅用于宿主机与网络之间的通信。

FPGA、 CPU、GPU、ASIC区别

Azure 服务器部署 FPGA 的架构。

FPGA(SmartNIC)对每个虚拟机虚拟出一块网卡,虚拟机通过 SR-IOV 直接访问这块虚拟网卡。原本在虚拟交换机里面的数据平面功能被移到了 FPGA 里面,虚拟机收发网络数据包均不需要 CPU 参与,也不需要经过物理网卡(NIC)。这样不仅节约了可用于出售的 CPU 资源,还提高了虚拟机的网络性能(25 Gbps),把同数据中心虚拟机之间的网络延迟降低了 10 倍。

FPGA、 CPU、GPU、ASIC区别

网络虚拟化的加速架构。

这就是微软部署 FPGA 的第三代架构,也是目前「每台服务器一块 FPGA」大规模部署所采用的架构。

FPGA 复用主机网络的初心是加速网络和存储,更深远的影响则是把 FPGA 之间的网络连接扩展到了整个数据中心的规模,做成真正 cloud-scale 的「超级计算机」。

第二代架构里面,FPGA 之间的网络连接局限于同一个机架以内,FPGA 之间专网互联的方式很难扩大规模,通过 CPU 来转发则开销太高。

第三代架构中,FPGA 之间通过 LTL (Lightweight Transport Layer) 通信。同一机架内延迟在 3 微秒以内;8 微秒以内可达 1000 块 FPGA;20 微秒可达同一数据中心的所有 FPGA。第二代架构尽管 8 台机器以内的延迟更低,但只能通过网络访问 48 块 FPGA。为了支持大范围的 FPGA 间通信,第三代架构中的 LTL 还支持 PFC 流控协议和 DCQCN 拥塞控制协议。

FPGA、 CPU、GPU、ASIC区别

纵轴:LTL 的延迟,横轴:可达的 FPGA 数量。

FPGA、 CPU、GPU、ASIC区别

FPGA 内的逻辑模块关系,其中每个 Role 是用户逻辑(如 DNN 加速、网络功能加速、加密),外面的部分负责各个 Role 之间的通信及 Role 与外设之间的通信。

FPGA、 CPU、GPU、ASIC区别

FPGA 构成的数据中心加速平面,介于网络交换层(TOR、L1、L2)和传统服务器软件(CPU 上运行的软件)之间。

通过高带宽、低延迟的网络互联的 FPGA 构成了介于网络交换层和传统服务器软件之间的数据中心加速平面。

除了每台提供云服务的服务器都需要的网络和存储虚拟化加速,FPGA 上的剩余资源还可以用来加速 Bing 搜索、深度神经网络(DNN)等计算任务。

对很多类型的应用,随着分布式 FPGA 加速器的规模扩大,其性能提升是超线性的。 

例如 CNN inference,当只用一块 FPGA 的时候,由于片上内存不足以放下整个模型,需要不断访问 DRAM 中的模型权重,性能瓶颈在 DRAM;如果 FPGA 的数量足够多,每块 FPGA 负责模型中的一层或者一层中的若干个特征,使得模型权重完全载入片上内存,就消除了 DRAM 的性能瓶颈,完全发挥出 FPGA 计算单元的性能。

当然,拆得过细也会导致通信开销的增加。把任务拆分到分布式 FPGA 集群的关键在于平衡计算和通信。

从神经网络模型到 HaaS 上的 FPGA。利用模型内的并行性,模型的不同层、不同特征映射到不同 FPGA。

在 MICRO'16 会议上,微软提出了 Hardware as a Service (HaaS) 的概念,即把硬件作为一种可调度的云服务,使得 FPGA 服务的集中调度、管理和大规模部署成为可能。

FPGA、 CPU、GPU、ASIC区别

Hardware as a Service (HaaS)。

从第一代装满 FPGA 的专用服务器集群,到第二代通过专网连接的 FPGA 加速卡集群,到目前复用数据中心网络的大规模 FPGA 云,三个思想指导我们的路线:

  • 硬件和软件不是相互取代的关系,而是合作的关系;

  • 必须具备灵活性,即用软件定义的能力;

  • 必须具备可扩放性(scalability)。

三、FPGA 在云计算中的角色

  • FPGA 在云规模的网络互连系统中应当充当怎样的角色?

  • 如何高效、可扩放地对 FPGA + CPU 的异构系统进行编程?

我对 FPGA 业界主要的遗憾是,FPGA 在数据中心的主流用法,从除微软外的互联网巨头,到两大 FPGA 厂商,再到学术界,大多是把 FPGA 当作跟 GPU 一样的计算密集型任务的加速卡。然而 FPGA 真的很适合做 GPU 的事情吗?

前面讲过,FPGA 和 GPU 最大的区别在于体系结构,FPGA 更适合做需要低延迟的流式处理,GPU 更适合做大批量同构数据的处理。

由于很多人打算把 FPGA 当作计算加速卡来用,两大 FPGA 厂商推出的高层次编程模型也是基于 OpenCL,模仿 GPU 基于共享内存的批处理模式。CPU 要交给 FPGA 做一件事,需要先放进 FPGA 板上的 DRAM,然后告诉 FPGA 开始执行,FPGA 把执行结果放回 DRAM,再通知 CPU 去取回。

CPU 和 FPGA 之间本来可以通过 PCIe 高效通信,为什么要到板上的 DRAM 绕一圈?也许是工程实现的问题,我们发现通过 OpenCL 写 DRAM、启动 kernel、读 DRAM 一个来回,需要 1.8 毫秒。而通过 PCIe DMA 来通信,却只要 1~2 微秒。

FPGA、 CPU、GPU、ASIC区别

PCIe I/O channel 与 OpenCL 的性能比较。纵坐标为对数坐标。

OpenCL 里面多个 kernel 之间的通信就更夸张了,默认的方式也是通过共享内存。

本文开篇就讲,FPGA 比 CPU 和 GPU 能效高,体系结构上的根本优势是无指令、无需共享内存。使用共享内存在多个 kernel 之间通信,在顺序通信(FIFO)的情况下是毫无必要的。况且 FPGA 上的 DRAM 一般比 GPU 上的 DRAM 慢很多。

因此我们提出了 ClickNP 网络编程框架 [5],使用管道(channel)而非共享内存来在执行单元(element/kernel)间、执行单元和主机软件间进行通信。

需要共享内存的应用,也可以在管道的基础上实现,毕竟 CSP(Communicating Sequential Process)和共享内存理论上是等价的嘛。ClickNP 目前还是在 OpenCL 基础上的一个框架,受到 C 语言描述硬件的局限性(当然 HLS 比 Verilog 的开发效率确实高多了)。理想的硬件描述语言,大概不会是 C 语言吧。

ClickNP 使用 channel 在 elements 间通信。

FPGA、 CPU、GPU、ASIC区别

ClickNP 使用 channel 在 FPGA 和 CPU 间通信。

低延迟的流式处理,需要最多的地方就是通信。 

然而 CPU 由于并行性的限制和操作系统的调度,做通信效率不高,延迟也不稳定。 

此外,通信就必然涉及到调度和仲裁,CPU 由于单核性能的局限和核间通信的低效,调度、仲裁性能受限,硬件则很适合做这种重复工作。因此我的博士研究把 FPGA 定义为通信的「大管家」,不管是服务器跟服务器之间的通信,虚拟机跟虚拟机之间的通信,进程跟进程之间的通信,CPU 跟存储设备之间的通信,都可以用 FPGA 来加速。

成也萧何,败也萧何。缺少指令同时是 FPGA 的优势和软肋。 

每做一点不同的事情,就要占用一定的 FPGA 逻辑资源。如果要做的事情复杂、重复性不强,就会占用大量的逻辑资源,其中的大部分处于闲置状态。这时就不如用冯·诺依曼结构的处理器。 

数据中心里的很多任务有很强的局部性和重复性:一部分是虚拟化平台需要做的网络和存储,这些都属于通信;另一部分是客户计算任务里的,比如机器学习、加密解密。

首先把 FPGA 用于它最擅长的通信,日后也许也会像 AWS 那样把 FPGA 作为计算加速卡租给客户。


不管通信还是机器学习、加密解密,算法都是很复杂的,如果试图用 FPGA 完全取代 CPU,势必会带来 FPGA 逻辑资源极大的浪费,也会提高 FPGA 程序的开发成本。更实用的做法是FPGA 和 CPU 协同工作,局部性和重复性强的归 FPGA,复杂的归 CPU。


当我们用 FPGA 加速了 Bing 搜索、深度学习等越来越多的服务;当网络虚拟化、存储虚拟化等基础组件的数据平面被 FPGA 把持;当 FPGA 组成的「数据中心加速平面」成为网络和服务器之间的天堑……似乎有种感觉,FPGA 将掌控全局,CPU 上的计算任务反而变得碎片化,受 FPGA 的驱使。以往我们是 CPU 为主,把重复的计算任务卸载(offload)到 FPGA 上;以后会不会变成 FPGA 为主,把复杂的计算任务卸载到 CPU 上呢?随着 Xeon + FPGA 的问世,古老的 SoC 会不会在数据中心焕发新生?文章来源地址https://www.toymoban.com/news/detail-424970.html

到了这里,关于FPGA、 CPU、GPU、ASIC区别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 一文让非技术宅读懂为什么AI更“喜欢”GPU而不是CPU?

      随着人工智能(AI)技术的快速发展,深度学习等算法在图像识别、自然语言处理、数据挖掘等方面表现出了强大的能力。而这些算法的底层计算,往往对硬件有着极高的要求。为了满足这些需求,越来越多的研究和工程实践开始尝试使用图形处理器(Graphics Processing Units,缩

    2024年02月17日
    浏览(43)
  • 架构对比(CPU、GPU、FPGA、ASIC、DSA……)

    AI芯片可按架构分为CPU、GPU、FPGA、ASIC,各架构的优缺点可参考以下文章: CPU、GPU、FPGA、ASIC等AI芯片特性及对比 最近,新名词 DSA(Domain Specific Architecture,特定领域架构),可参考以下文章: 预见·第四代算力革命(一):算力综述 预见·第四代算力革命(二):三大主流计

    2024年02月12日
    浏览(42)
  • 一文读懂「四大主流计算芯片 CPU、GPU、ASIC、FPGA」特点和场景

    纵观人类历史,从结绳计数、木制计数到巴比伦的粘土板上的刻痕,再到中国古代的算盘,社会生产力的提高与当时所采用的计算工具密切相关。计算工具能力越强,就能大幅缩短人类解决复杂问题的时间,社会生产力水平自然就会越高。 CPU,全称Central Processing Unit,即中央

    2024年02月19日
    浏览(35)
  • AI芯片架构体系综述:芯片类型CPU\GPU\FPGA\ASIC以及指令集CSIS\RISC介绍

    大模型的发展意味着算力变的越发重要,因为大国间科技竞争的关系,国内AI从业方在未来的一段时间存在着算力不确定性的问题,与之而来的是许多新型算力替代方案的产生。如何从架构关系上很好的理解计算芯片的种类,并且从计算类型、生态、流片能力等多角度评估算

    2024年02月04日
    浏览(47)
  • 为什么CPU需要时钟

    为什么CPU需要时钟这样一个概念? 什么是时钟脉冲,CPU为什么需要时钟,时钟信号是怎么产生的? 上面这个图的方波就是一个脉冲,类比于人类的脉搏跳动。一个脉冲称之为CPU的一个 时钟信号 ,或者 时钟脉冲 。一个脉冲周期就叫CPU时钟周期,一个时钟周期内时钟信号震荡一

    2023年04月11日
    浏览(49)
  • AI训练,为什么需要GPU?

    随着人工智能热潮,GPU成为了AI大模型训练平台的基石,决定了算力能力。为什么GPU能力压CPU,成为炙手可热的主角呢?首先我们要先了解一下GPU的分类。提到分类,就得提及到芯片。 半导体芯片分为 数字芯片 和 模拟芯片 。其中,数字芯片的市场规模占比较大,达到70%左右

    2024年04月11日
    浏览(56)
  • 为什么使用Nacos而不是Eureka(Nacos和Eureka的区别)

    为什么如今微服务注册中心用Nacos相对比用Eureka的多了?本文章将介绍他们之间的区别和优缺点。 简介: Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的。 详解: Eureka包

    2024年02月11日
    浏览(53)
  • C——Union是什么?Union和Struct这么像,区别在哪?为什么还要创造出union呢?需要在哪里使用呢?

    在 C 语言中,有一种叫做 union 的变量,是用来在不同的情况下,存放不同类型和大小的对象的变量。这与结构体 struct 很相似:结构体是一个或多个变量的集合。 union 的声明方式非常简单,也与 struct 一模一样,如下: 可以看到,唯一的不同就是结构体中的 struct 变成了 un

    2024年02月03日
    浏览(52)
  • 从CPU的视角看 多线程代码为什么那么难写!

      当我们提到多线程、并发的时候,我们就会回想起各种诡异的bug,比如各种线程安全问题甚至是应用崩溃,而且这些诡异的bug还很难复现。我们不禁发出了灵魂拷问 “为什么代码测试环境运行好好的,一上线就不行了?”。 为了解决线程安全的问题,我们的先辈们在编

    2024年02月02日
    浏览(63)
  • CPU与GPU到底有什么区别?

    大家好,我是小风哥,今天简单聊聊CPU与GPU。 CPU的故事我们聊得比较多了,之前也发布过很多关于CPU的文章,因此这里重点聊聊GPU。 教授 vs 小学生 你可以简单的将CPU理解为学识渊博的教授,什么都精通,而GPU则是一堆小学生,只会简单的算数运算,可即使教授再神通广大,

    2024年02月09日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包