ray-分布式计算框架-集群与异步Job管理

这篇具有很好参考价值的文章主要介绍了ray-分布式计算框架-集群与异步Job管理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. ray 简介

ray是开源分布式计算框架,为并行处理提供计算层,用于扩展AI与Python应用程序,是ML工作负载统一工具包
ray-分布式计算框架-集群与异步Job管理

  • Ray AI Runtime

ML应用程序库集

  • Ray Core

通用分布式计算库

  • Task -- Ray允许任意Python函数在单独的Python worker上运行,这些异步Python函数称为任务
  • Actor -- 从函数扩展到类,是一个有状态的工作者,当一个Actor被创建,一个新的worker被创建,并且actor的方法被安排到那个特定的worker上,并且可以访问和修改那个worker的状态
  • Object -- Task与Actor在对象上创建与计算,被称为远程对象,被存储在ray的分布式共享内存对象存储上,通过对象引用来引用远程对象。集群中每个节点都有一个对象存储,远程对象存储在何处(一个或多个节点上)与远程对象引用的持有者无关
  • Placement Groups -- 允许用户跨多个节点原子性的保留资源组,以供后续Task与Actor使用
  • Environment Dependencies -- 当Ray在远程机器上执行Task或Actor时,它们的依赖环境项(Python包、本地文件、环境变量)必须可供代码运行。解决环境依赖的方式有两种,一种是在集群启动前准备好对集群的依赖,另一种是在ray的运行时环境动态安装
  • Ray cluster

一组连接到公共 Ray 头节点的工作节点,通过 kubeRay operator管理运行在k8s上的ray集群

  • 关联链接
    • Ray Doc: https://docs.ray.io/en/latest/ray-overview/index.html
    • Ray Github: https://ray-project.github.io/kuberay/deploy/helm-cluster/
    • Python raycluster 管理API: https://github.com/ray-project/kuberay/tree/master/clients/python-client
    • Ray Job Python SDK Doc: https://docs.ray.io/en/latest/cluster/running-applications/job-submission/jobs-package-ref.html#ray-job-submission-sdk-ref

1. ray 集群管理

ray版本:2.3.0

  • Kind 创建测试k8s集群

1主3从集群

# 配置文件 -- 一主两从(默认单主),文件名:k8s-3nodes.yaml
kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
- role: control-plane
- role: worker
- role: worker

创建k8s集群

kind create cluster --config k8s-3nodes.yaml
  • KubeRay 部署ray集群
# helm方式安装
# 添加Charts仓库
helm repo add kuberay https://ray-project.github.io/kuberay-helm/

# 安装default名称空间
# 安装 kubeRay operator
# 下载离线的chart包: helm pull kuberay/kuberay-operator --version 0.5.0
# 本地安装: helm install kuberay-operator 
helm install kuberay-operator kuberay/kuberay-operator --version 0.5.0

# 创建ray示例集群,若通过sdk管理则跳过
# 下载离线的ray集群自定义资源:helm pull kuberay/ray-cluster  --version 0.5.0
helm install raycluster kuberay/ray-cluster --version 0.5.0

# 获取ray集群对应的CR
kubectl get raycluster

# 查询pod的状态
kubectl get pods

# 转发svc 8265端口到本地8265端口
kubectl port-forward --address 0.0.0.0 svc/raycluster-kuberay-head-svc 8265:8265

# 登录ray head节点,并执行一个job
kubectl exec -it ${RAYCLUSTER_HEAD_POD} -- bash
python -c "import ray; ray.init(); print(ray.cluster_resources())" # (in Ray head Pod)

# 删除ray集群
helm uninstall raycluster

# 删除kubeRay
helm uninstall kuberay-operator

# 查询helm管理的资源
helm ls --all-namespaces
  • Ray 集群管理

前置要求:

  1. 安装 KubeRay
  2. 安装 k8s sdk: pip install kubernetes
  3. 将python_client拷贝到PYTHONPATH路径下或者直接安装python_client, 该库路径为:https://github.com/ray-project/kuberay/tree/master/clients/python-client/python_client
from python_client import kuberay_cluster_api
from python_client.utils import kuberay_cluster_utils, kuberay_cluster_builder


def main():
    
    # ray集群管理的api 获取集群列表、创建集群、更新集群、删除集群
    kuberay_api = kuberay_cluster_api.RayClusterApi()

    # CR 构建器,构建ray集群对应的字典格式的CR
    cr_builder = kuberay_cluster_builder.ClusterBuilder()

    # CR资源对象操作工具,更新cr资源
    cluster_utils = kuberay_cluster_utils.ClusterUtils()

    # 构建集群的CR,是一个字典对象,可以修改、删除、添加额外的属性
    # 可以指定包含特定环境依赖的人ray镜像
    cluster = (
        cr_builder.build_meta(name="new-cluster1", labels={"demo-cluster": "yes"}) # 输入ray群名称、名称空间、资源标签、ray版本信息
        .build_head(cpu_requests="0", memory_requests="0")   # ray集群head信息: ray镜像名称、对应service类型、cpu memory的requests与limits、ray head启动参数
        .build_worker(group_name="workers", cpu_requests="0", memory_requests="0") # ray集群worker信息: worker组名称、 ray镜像名称、ray启动命令、cpu memory的requests与limits、默认副本个数、最大与最小副本个数
        .get_cluster()
    )
    
    # 检查CR是否构建成功
    if not cr_builder.succeeded:
        print("error building the cluster, aborting...")
        return

    # 创建ray集群
    kuberay_api.create_ray_cluster(body=cluster)

    # 更新ray集群CR中的worker副本集合
    cluster_to_patch, succeeded = cluster_utils.update_worker_group_replicas(
        cluster, group_name="workers", max_replicas=4, min_replicas=1, replicas=2
    )

    if succeeded:
        # 更新ray集群
        kuberay_api.patch_ray_cluster(
            name=cluster_to_patch["metadata"]["name"], ray_patch=cluster_to_patch
        )

    # 在原来的集群的CR中的工作组添加新的工作组
    cluster_to_patch, succeeded = cluster_utils.duplicate_worker_group(
        cluster, group_name="workers", new_group_name="duplicate-workers"
    )

    if succeeded:
        kuberay_api.patch_ray_cluster(
            name=cluster_to_patch["metadata"]["name"], ray_patch=cluster_to_patch
        )

    # 列出所有创建的集群
    kube_ray_list = kuberay_api.list_ray_clusters(k8s_namespace="default", label_selector='demo-cluster=yes')
    if "items" in kube_ray_list:
        for cluster in kube_ray_list["items"]:
            print(cluster["metadata"]["name"], cluster["metadata"]["namespace"])

    # 删除集群
    if "items" in kube_ray_list:
        for cluster in kube_ray_list["items"]:
            print("deleting raycluster = {}".format(cluster["metadata"]["name"]))
            
            # 通过指定名称删除ray集群
            kuberay_api.delete_ray_cluster(
                name=cluster["metadata"]["name"],
                k8s_namespace=cluster["metadata"]["namespace"],
            )


if __name__ == "__main__":
    main()

2. ray Job 管理

前置: pip install -U "ray[default]"

  • 创建一个job任务
# 文件名称: test_job.py
# python 标准库
import json
import ray
import sys

# 已经在ray节点安装的库
import redis

# 通过job提交时传递的模块依赖 runtime_env 配置 py_modules,通过 py_nodules传递过来就可以直接在job中导入
from test_module import test_1
import stk12

# 创建一个连接redeis对象,通过redis作为中转向job传递输入并获取job的输出
redis_cli = redis.Redis(host='192.168.6.205', port=6379,  decode_responses=True)

# 通过redis获取传入过来的参数
input_params_value = None
if len(sys.argv) > 1:
    input_params_key = sys.argv[1]
    input_params_value = json.loads(redis_cli.get(input_params_key))


# 执行远程任务
@ray.remote
def hello_world(value):
    return [v + 100 for v in value]

ray.init()

# 输出传递过来的参数
print("input_params_value:", input_params_value, type(input_params_key))

# 执行远程函数
result = ray.get(hello_world.remote(input_params_value))

# 获取输出key
output_key = input_params_key.split(":")[0] + ":output"

# 将输出结果放入redis
redis_cli.set(output_key, json.dumps(result))

# 测试传递过来的Python依赖库是否能正常导入
print(test_1.test_1())
print(stk12.__dir__())
  • 创建测试自定义模块
# 模块路径: test_module/test_1.py
def test_1():
    return "test_1"
  • 创建一个job提交对象
import json

from ray.job_submission import JobSubmissionClient, JobStatus
import time
import uuid
import redis

# 上传un到ray集群供job使用的模块
import test_module
from agi import stk12

# 创建一个连接redeis对象
redis_cli = redis.Redis(host='192.168.6.205', port=6379,  decode_responses=True)

# 创建一个client,指定远程ray集群的head地址
client = JobSubmissionClient("http://127.0.0.1:8265")

# 创建任务的ID
id = uuid.uuid4().hex
input_params_key = f"{id}:input"
input_params_value = [1, 2, 3, 4, 5]

# 将输入参数存入redis,供远程函数job使用
redis_cli.set(input_params_key, json.dumps(input_params_value))


# 提交一个ray job 是一个独立的ray应用程序
job_id = client.submit_job(
    # 执行该job的入口脚本
    entrypoint=f"python test_job.py {input_params_key}",

    # 将本地文件上传到ray集群
    runtime_env={
        "working_dir": "./",
        "py_modules": [test_module, stk12],
        "env_vars": {"testenv": "test-1"}
    },

    # 自定义任务ID
    submission_id=f"{id}"
)

# 输出job ID
print("job_id:", job_id)


def wait_until_status(job_id, status_to_wait_for, timeout_seconds=5):
    """轮询获取Job的状态,当完成时获取任务的的日志输出"""
    start = time.time()
    while time.time() - start <= timeout_seconds:
        # 获取任务的状态
        status = client.get_job_status(job_id)
        print(f"status: {status}")

        # 检查任务的状态
        if status in status_to_wait_for:
            break
        time.sleep(1)


wait_until_status(job_id, {JobStatus.SUCCEEDED, JobStatus.STOPPED, JobStatus.FAILED})

# 输出job日志
logs = client.get_job_logs(job_id)
print(logs)

# 输出从job中获取的任务
output_key = job_id + ":output"
output_value = redis_cli.get(output_key)
print("output:", output_value)
  • job 管理
from ray.job_submission import JobSubmissionClient, JobDetails, JobInfo, JobType, JobStatus
# 创建一个job提交客户端,如果管理多个ray集群的Job则切换或者创建多个连接ray head节点的客户端
job_cli = JobSubmissionClient("http://127.0.0.1:8265")

# Job信息,对应Job中submission_id属性
job_id = "b9ad6ff9ada445a29fb54307f1394594"
job_info = job_cli.get_job_info(job_id)

# 获取提交的所有job
jobs = job_cli.list_jobs()

for job in jobs:

    # 获取job的状态
    job_status = job_cli.get_job_status(job.submission_id)
    print(f"job_id: {job.submission_id}, job_status: {job_status}")

    # 输出job的json格式详情
    print("job:", job.json())

# 停止Job
job_cli.stop_job(job_id)

# 删除 job
# job_cli.delete_job(job_id)

# 提交 Job
# job_cli.submit_job()


# 获取版本信息
print("version:", job_cli.get_version())

3. 产品场景

  • 将周期、耗时任务异步化

镜像文件打包下载、文件同步、运维脚本、数据导出与同步、镜像同步、服务启停、TATC卫星项目中算法任务的执行、批量同类型任务的计算(如卫星项目中卫星轨迹的计算)、备份任务文章来源地址https://www.toymoban.com/news/detail-425082.html

  • k8s中每个租户可以创建与删除自己的ray集群实例,在线IDE中将计算型任务交给ray来执行,不消耗IED所在环境的计算资源

到了这里,关于ray-分布式计算框架-集群与异步Job管理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习分布式框架ray运行TensorFlow实例

    使用Ray来实现TensorFlow的训练是一种并行化和分布式的方法,它可以有效地加速大规模数据集上的深度学习模型的训练过程。Ray是一个高性能、分布式计算框架,可以在集群上进行任务并行化和数据并行化,从而提高训练速度和可扩展性。 以下是实现TensorFlow训练的概括性描述

    2024年02月15日
    浏览(39)
  • 39学习分布式计算框架 Hadoop 的高可用方案,如 NameNode 集群、ZooKeeper

    Hadoop 是一个分布式计算框架,用于存储和处理大数据。在 Hadoop 集群中,NameNode 是一个关键组件,它负责管理 Hadoop 分布式文件系统(HDFS)中的文件和目录。为了确保高可用性,需要使用多个 NameNode 节点进行冗余备份,并使用 ZooKeeper 进行故障检测和自动故障切换。 以下是学

    2023年04月26日
    浏览(40)
  • 分布式任务调度框架Power-Job

    在大型业务业务系统中,不可避免会出现一些需要定时执行需求的场景,例如定时同步数据,定时清洗数据,定时生成报表,大量机器一同执行某个任务,甚至有些需要分布式处理的任务例如需要更新一大批数据,单机耗时太长需要进行任务分发,利用集群的计算能力等等

    2024年02月04日
    浏览(32)
  • 【分布式任务调度】(一)XXL-JOB调度中心集群部署配置

    XXL-JOB是一款轻量级的分布式任务调度中间件,默认支持6000个定时任务,如果生产环境的任务数量在这个范围内,可以选择使用 XXL-JOB。 XXL-JOB由Quartz这款老牌的任务调度中间件演化而来,相对来说,具备以下优势: 操作更简单,学习成本更低 使用异步化调度,性能更好 有配

    2024年02月16日
    浏览(33)
  • Celery分布式异步框架

    \\\"\\\"\\\" 1)可以不依赖任何服务器,通过自身命令,启动服务(内部支持socket) 2)celery服务为为其他项目服务提供异步解决任务需求的 注:会有两个服务同时运行,一个是项目服务,一个是celery服务,项目服务将需要异步处理的任务交给celery服务,celery就会在需要时异步完成项目的

    2024年02月11日
    浏览(31)
  • 分布式异步任务框架celery

    Celery是一个基于消息中间件的分布式任务队列框架,专门用于处理异步任务。它允许生产者发送任务到消息队列,而消费者则负责处理这些任务。Celery的核心特性包括异步执行、实时操作支持以及强大的调度能力,使其每天可以处理数以百万计的任务。 在Celery中,任务是以

    2024年04月10日
    浏览(39)
  • 分布式集群框架——Google文件系统GFS

    Google 文件系统 GFS         Google 文件系统( Google File System , GFS )是一个大型的分布式文件系统。它为 Google 云计算提供海量存储,并且与 Chubby 、 MapReduce 以及 Bigtable 等技术结合十分紧密,处于所有核心技术的底层。 由于 GFS 并不是一个开源的系统,我们仅仅能从 Goog

    2024年02月10日
    浏览(32)
  • 分布式集群框架——有关zookeeper的面试考点

          当涉及到大规模分布式系统的协调和管理时,Zookeeper是一个非常重要的工具。 1. 分布式协调服务:Zookeeper是一个分布式协调服务,它提供了一个高可用和高性能的环境,用于协调和同步分布式系统中的各个节点。它通过提供共享的命名空间和一致性的数据模型来简化开

    2024年02月11日
    浏览(34)
  • Spark分布式内存计算框架

    目录 一、Spark简介 (一)定义 (二)Spark和MapReduce区别 (三)Spark历史 (四)Spark特点 二、Spark生态系统 三、Spark运行架构 (一)基本概念 (二)架构设计 (三)Spark运行基本流程 四、Spark编程模型 (一)核心数据结构RDD (二)RDD上的操作 (三)RDD的特性 (四)RDD 的持

    2024年02月04日
    浏览(45)
  • 大数据开源框架环境搭建(七)——Spark完全分布式集群的安装部署

    前言:七八九用于Spark的编程实验 大数据开源框架之基于Spark的气象数据处理与分析_木子一个Lee的博客-CSDN博客_spark舆情分析 目录 实验环境: 实验步骤: 一、解压 二、配置环境变量:  三、修改配置文件  1.修改spark-env.sh配置文件: 2.修改配置文件slaves: 3.分发配置文件:

    2024年02月11日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包