一、高并发下如何保证读写一致
1.1 写操作
对于写操作,一致性级别支持 quorum/one/all,默认为 quorum,即只有当大多数分片可用时才允许写操作。但即使大多数可用,也可能存在因为网络等原因导致写入副本失败,这样该副本被认为故障,副本将会在一个不同的节点上重建。
one:写操作只要有一个primary shard是active活跃可用的,就可以执行
all:写操作必须所有的primary shard和replica shard都是活跃可用的,才可以执行
quorum:默认值,要求ES中大部分的shard是活跃可用的,才可以执行写操作
1.2 读操作
对于读操作,可以设置 replication 为 sync(默认),这使得在写入操作时,在主分片和副本分片都完成后才会返回;如果设置replication 为 async 时,也可以通过设置搜索请求参数 _preference 为 primary 来查询主分片,确保文档是最新版本。
1.3 更新操作 通过版本号使用乐观锁并发控制
每个文档都有一个_version 版本号,这个版本号在文档被改变时加一。Elasticsearch使用这个 _version 保证所有修改都被正确排序,当一个旧版本出现在新版本之后,它会被简单的忽略。
利用_version的这一优点确保数据不会因为修改冲突而丢失,比如指定文档的version来做更改,如果那个版本号不是现在的,我们的请求就失败了。
二、ES数据写入流程
2.1、ES写数据的整体流程:
(1)客户端选择 ES 的某个 node 发送请求过去,这个 node 就是协调节点 coordinating node
(2)coordinating node 对 document 进行路由,将请求转发给对应的 node(有 primary shard)
(3)实际的 node 上的 primary shard 处理请求,然后将数据同步到 replica node
(4)coordinating node 等到 primary node 和所有 replica node 都执行成功之后,最后返回响应结果给客户端。
2.2、ES主分片写数据的详细流程:
(1)主分片先将数据写入ES的 memory buffer,然后定时(默认1s)将 memory buffer 中的数据写入一个新的 segment 文件中,并进入操作系统缓存 Filesystem cache(同时清空 memory buffer),这个过程就叫做 refresh;每个 segment 文件实际上是一些倒排索引的集合, 只有经历了 refresh 操作之后,这些数据才能变成可检索的。
每个 segment 是一个包含正排(空间占比90~95%)+ 倒排(空间占比5~10%)的完整索引文件,每次搜索请求会将所有 segment 中的倒排索引部分加载到内存,进行查询和打分,然后将命中的文档号拿到正排中召回完整数据记录。如果不对segment做配置,就会导致查询性能下降
ES 的近实时性:数据存在 memory buffer 时是搜索不到的,只有数据被 refresh 到 Filesystem cache 之后才能被搜索到,而 refresh 是每秒一次, 所以称 es 是近实时的;可以手动调用 es 的 api 触发一次 refresh 操作,让数据马上可以被搜索到;
commit point: 记录当前所有可用的 segment ,每个 commit point 都会维护一个 .del 文件( es 删除数据本质是不属于物理删除),当 es 做删改操作时首先会在 .del 文件中声明某个 document 已经被删除,文件内记录了在某个 segment 内某个文档已经被删除,当查询请求过来时在 segment 中被删除的文件是能够查出来的,但是当返回结果时会根据 commit point 维护的那个 .del 文件把已经删除的文档过滤掉;
(2)由于 memory Buffer 和 Filesystem Cache 都是基于内存,假设服务器宕机,那么数据就会丢失,所以 ES 通过 translog 日志文件来保证数据的可靠性,在数据写入 memory buffer 的同时,将数据也写入 translog 日志文件中,当机器宕机重启时,es 会自动读取 translog 日志文件中的数据,恢复到 memory buffer 和 Filesystem cache 中去。
ES 数据丢失的问题:translog 也是先写入 Filesystem cache,然后默认每隔 5 秒刷一次到磁盘中,所以默认情况下,可能有 5 秒的数据会仅仅停留在 memory buffer 或者 translog 文件的 Filesystem cache中,而不在磁盘上,如果此时机器宕机,会丢失 5 秒钟的数据。也可以将 translog 设置成每次写操作必须是直接 fsync 到磁盘,但是性能会差很多。
(3)flush 操作:不断重复上面的步骤,translog 会变得越来越大,不过 translog 文件默认每30分钟或者 阈值超过 512M 时,就会触发 commit 操作,即 flush操作,将 memory buffer 中所有的数据写入新的 segment 文件中, 并将内存中所有的 segment 文件全部落盘,最后清空 translog 事务日志。
① 将 memory buffer 中的数据 refresh 到 Filesystem Cache 中去,清空 buffer;
② 创建一个新的 commit point(提交点),同时强行将 Filesystem Cache 中目前所有的数据都 fsync 到磁盘文件中;
③ 删除旧的 translog 日志文件并创建一个新的 translog 日志文件,此时 commit 操作完成
三、ES的搜索流程
搜索被执行成一个两阶段过程,即 Query Then Fetch:
3.1、Query阶段:
客户端发送请求到 coordinate node,协调节点将搜索请求广播到所有的 primary shard 或 replica,每个分片在本地执行搜索并构建一个匹配文档的大小为 from + size 的优先队列。接着每个分片返回各自优先队列中 所有 docId 和 打分值 给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果。
3.2、Fetch阶段:
协调节点根据 Query阶段产生的结果,去各个节点上查询 docId 实际的 document 内容,最后由协调节点返回结果给客户端。
coordinate node 对 doc id 进行哈希路由,将请求转发到对应的 node,此时会使用 round-robin 随机轮询算法,在 primary shard 以及其所有 replica 中随机选择一个,让读请求负载均衡。
接收请求的 node 返回 document 给 coordinate node 。
coordinate node 返回 document 给客户端。
Query Then Fetch 的搜索类型在文档相关性打分的时候参考的是本分片的数据,这样在文档数量较少的时候可能不够准确,DFS Query Then Fetch 增加了一个预查询的处理,询问 Term 和 Document frequency,这个评分更准确,但是性能会变差。
四、ES查询原理
4.1 lucene查询过程
每个 document 的 name value 经过分词形成多个 term,多个 term 组成 term dictionary,如下显示基于 name 创建倒排链如下:
在这里,Alice、Alan 都是 term。所以倒排本质上就是基于 term 的反向列表,方便通过属性反向查找 doc_id。
到这里我们有个很自然的问题,如何快速拿到这个倒排表呢?在 lucene 里面就引入了 term dictonary 的概念,也就是 term 的字典。term 字典里我们可以按照 term 进行排序,那么用一个二分查找就可以找到这个 term 所对应的倒排表信息,这样的复杂度是 logN。
但在 term 很多,内存放不下的时候,效率还是需要进一步提升。 为解决这个问题,lucene 引用 term dict index 来存放 term 的共享前缀,后缀则放在 term dictonary 中。
term dict index:是采用 FST 数据结构,存放在内存中。term dict index 查到对应的 term dict 的 block 位置之后,再去磁盘上找 term,大大减少了磁盘的 random access 次数
Term dict:在磁盘上是以分 block 的方式保存的,一个 block 内部利用公共前缀压缩,比如都是 Ab 开头的单词就可以把 Ab 省去
SkipList: 是以 docId 建立的数据结构
如果所有的 term 都是英文字符的话,可能这个 term index 就真的是 26 个英文字符表构成的了。但是实际的情况是,term 未必都是英文字符,term 可以是任意的 byte 数组。
在 term dict index 中需要保存的是 Term 的前面部分字段,以及与 Term Dictionary 之间的映射关系,这使得存储的信息量减少。再结合 FST(Finite State Transducer)压缩技术,term dict index 可以被压缩到足够小,以至于可以被缓存进服务器内存中,而 Term 后缀则存放在 trem dict。
4.2 整个检索过程如下:
内存加载 term dict index(tip文件),通过 FST 匹配前缀找到后缀词块位置。
根据词块位置,读取磁盘中 Term dict(tim 文件),匹配后缀,读取倒排表信息。
根据倒排表位置去 doc文件 中加载文档数据。
找到了倒排表,怎么通过 docId 找到我们需要的文档呢?
在图 1 中,为了便于介绍,我们处理的是文档号 0~3455 的 3456 篇文档,我们另skipInterval 为 128,即每处理 128 篇文档生成一个 PackedBlock,对应一个 datum;另 skipMultiplier 为 3(源码中默认值为 8),即每生成 3 个 datum 就在上一层生成一个新的索引,新的索引也是一个 datum,它是 3 个 datum 中的最后一个,并且增加了一个索引值 SkipChildLevelPointer 来实现映射关系(见索引文件的生成(三)),每一层的数值为 PackedBlock 中的最后一篇文档的文档号,例如 level=2 的三个数值 1151、2303、3455。
4.3倒排合并(水平分桶和bitmap)
到这里还有另一个问题,那就是当我们查询中出现了 name=‘Alan’ and name=‘Alice’ limit 0,20 该如何处理?
它会拆分为 term = ‘Alan’ 和 term = 'Alice’的查询。分别得到每个term的倒排链(docId列表),再对多个倒排表做交集。那么倒排表怎么做交集呢?
水平分桶,多线程并行
有序集合1{1,3,5,7,8,9, 10,30,50,70,80,90}和有序集合2{2,3,4,5,6,7, 20,30,40,50,60,70},先进行分桶拆分【桶1的范围为[1, 9]、桶2的范围为[10, 100]、桶3的范围为[101, max_int]】,于是拆分成集合1【a={1,3,5,7,8,9}、b={10,30,50,70,80,90}、c={}】和集合2【d={2,3,4,5,6,7}、e={20,30,40,50,60,70}、e={}】,利用多线程对桶1(a和d)、桶2(b和e)、桶3(c和e)分别求交集,最后求并集。
bitmap,大大提高运算并行度,时间复杂度O(n)
假设set1{1,3,5,7,8,9}和set2{2,3,4,5,6,7}的所有元素都在桶值[1, 16]的范围之内,可以用16个bit来描述这两个集合,原集合中的元素x,在这个16bitmap中的第x个bit为1,此时两个bitmap求交集,只需要将两个bitmap进行“与”操作,结果集bitmap的3,5,7位是1,表明原集合的交集为{3,5,7}文章来源:https://www.toymoban.com/news/detail-425725.html
水平分桶(每个桶内的数据一定处于一个范围之内),使用bitmap来表示集合,能极大提高求交集的效率,但时间复杂度仍旧是O(n),但bitmap需要大量连续空间,占用内存较大。文章来源地址https://www.toymoban.com/news/detail-425725.html
到了这里,关于ES集群配置的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!