一分钟搞懂 微调(fine-tuning)和prompt

这篇具有很好参考价值的文章主要介绍了一分钟搞懂 微调(fine-tuning)和prompt。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


大家都是希望让预训练语言模型和下游任务靠的更近,只是实现的方式不一样。Fine-tuning中:是预训练语言模型“迁就“各种下游任务;Prompting中,是各种下游任务“迁就“预训练语言模型。

区别与联系

微调(fine-tuning)和prompt是自然语言处理领域中常用的两个术语,它们都是指训练和生成语言模型的过程中使用的技术。

区别

微调是指在已有的预训练语言模型基础上,通过少量的数据来对模型进行进一步的训练,使得模型能够更好地适应新的任务或领域。微调的目的是利用已有的语言模型,尽量减少训练新模型的时间和资源消耗。因此,微调是一种快速迁移学习的方法。

而prompt是指为了训练特定类型的语言模型而设计的一系列文本或代码提示。prompt可以看作是一种能够帮助语言模型更好地理解特定任务或领域的“指令”。prompt通常包括一个问题、任务描述或预定义的文本片段,用于指导模型生成合适的文本结果。融入了Prompt的新模式大致可以归纳成”pre-train, prompt, and predict“。在该模式中,下游任务被重新调整成类似预训练任务的形式。例如,通常的预训练任务有Masked Language Model,在文本情感分类任务中,对于 “I love this movie.” 这句输入,可以在后面加上prompt “The movie is ___” 这样的形式,然后让PLM用表示情感的答案填空如 “great”、“fantastic” 等等,最后再将该答案转化成情感分类的标签,这样以来,通过选取合适的prompt,我们可以控制模型预测输出,从而一个完全无监督训练的PLM可以被用来解决各种各样的下游任务。

联系

微调和prompt都是针对自然语言处理任务的训练技术,用于提高模型的性能。微调通常用于改进模型的通用性,以便将预训练模型适应到新的任务或领域,而prompt通常用于指导模型在特定任务上的表现。

在某些情况下,微调和prompt也可以一起使用,即使用预训练语言模型进行微调,并通过定义适当的prompt来指导模型生成合适的文本结果。这种方法可以提高模型在特定任务上的性能,并减少针对该任务的训练时间和资源消耗。

优缺点

微调的优点

可以快速迁移学习:利用已有的预训练模型,可以快速迁移学习到新的任务或领域中。

可以减少训练时间和资源消耗:微调只需要使用少量的数据对模型进行进一步训练,可以显著减少训练时间和资源消耗。

微调的缺点

可能存在过拟合问题:在微调过程中,可能会因为过度拟合而导致模型的泛化性能下降。

需要适当的数据量和质量:微调需要使用足够数量且高质量的数据来训练模型,否则可能会影响模型的性能。

prompt的优点

可以帮助模型更好地理解任务和领域:prompt可以为模型提供指导性信息,帮助模型更好地理解任务和领域,从而提高模型的性能。

可以缩短训练时间:prompt可以有效减少训练时间,因为它可以提供更加准确的指导信息,帮助模型更快地学习到任务和领域的规律。

prompt的缺点

需要设计合适的prompt:为了获得良好的模型性能,需要精心设计合适的prompt,这需要一定的人工成本和专业知识。

可能存在过拟合问题:如果prompt设计得不好或者过于复杂,可能会导致模型在训练集上表现良好,但在测试集上表现不佳的过拟合问题。

在CV领域

在CV领域中,Prompt其实可以理解为图像label的设计,从这个角度看,Prompt(预测文本中mask的字符,类似完形填空)其实是介于Image caption(迭代预测出每一个字符)和one-hot label(one-hot可以认为是prompt的特例,单字符通过text encoder编码成one-hot)之间的任务。

Reference

如何看待NLP领域最近比较火的prompt,能否借鉴到CV领域?
NLP新宠——浅谈Prompt的前世今生文章来源地址https://www.toymoban.com/news/detail-425825.html

到了这里,关于一分钟搞懂 微调(fine-tuning)和prompt的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务

    ChatYuan-large-v2 是一个开源的支持中英双语的功能型对话语言大模型,与其他 LLM 不同的是模型十分轻量化,并且在轻量化的同时效果相对还不错,仅仅通过 0.7B 参数量就可以实现 10B 模型的基础效果,正是其如此的轻量级,使其可以在普通显卡、 CPU 、甚至手机上进行推理,而

    2024年02月13日
    浏览(46)
  • 自然语言基础 IMDB下的 MLM (掩码模型) & Bert Fine-tuning (模型微调)

    本文是Hugging Face 上 NLP的一篇代码教程,通过imdb数据集, Fine-tuning微调 Bert预训练模型。 涉及包括: MLM, Bert, Fine-tuning, IMDB, Huggingface Repo 微调的方式是通过调整训练模型的学习率来重新训练模型,这个来自 早期 ACL 2018的一篇paper: 《Universal Language Model Fine-tuning for Text

    2024年02月15日
    浏览(42)
  • ChatGPT fine tune微调+prompt介绍

    首先我们需要安装openai 安装好openai以及获得API key后,我们就可以调用接口了,首先我们来看下openai能够提供的模型有什么: 我们可以看出,目前提供的模型有如下: 接下来大概介绍一下我们应该怎样去调用接口,获取我们想要的结果。 prompt=‘a delicious dessert’ , 其中返回

    2024年02月08日
    浏览(57)
  • 【论文解读】(如何微调BERT?) How to Fine-Tune BERT for Text Classification?

    论文地址:https://arxiv.org/pdf/1905.05583.pdf 论文年份:2019年05月 论文代码: https://github.com/xuyige/BERT4doc-Classification 论文引用量:1191 (截止2023-04-28) 论文阅读前提:熟悉NLP、深度学习、Transformer、BERT、多任务学习等。 现在NLP任务方式大多都是对BERT进行微调。例如:我们要做一个

    2024年02月07日
    浏览(42)
  • 通过ORPO技术微调 llama3大模型(Fine-tune Llama 3 with ORPO)

    1f45bd1e8577af66a05f5e3fadb0b29 ORPO是一种新颖的微调技术,它将传统的监督微调和偏好对齐阶段整合到一个过程中。这减少了训练所需的计算资源和时间。此外,经验结果表明,ORPO在各种模型大小和基准测试中都超过了其他对齐方法。 在本文中,我们将使用ORPO和TRL库来微调新的

    2024年04月23日
    浏览(38)
  • LLMs 缩放指令模型Scaling instruct models FLAN(Fine-tuned LAnguage Net,微调语言网络)

    本论文介绍了FLAN(Fine-tuned LAnguage Net,微调语言网络),一种指导微调方法,并展示了其应用结果。该研究证明,通过在1836个任务上微调540B PaLM模型,同时整合Chain-of-Thought Reasoning(思维链推理)数据,FLAN在泛化、人类可用性和零射推理方面相对于基础模型取得了改进。论文

    2024年02月11日
    浏览(34)
  • 深入理解预训练(pre-learning)、微调(fine-tuning)、迁移学习(transfer learning)三者的联系与区别

    你需要搭建一个网络模型来完成一个特定的图像分类的任务。首先,你需要随机初始化参数,然后开始训练网络,不断调整参数,直到网络的损失越来越小。在训练的过程中,一开始初始化的参数会不断变化。当你觉得结果很满意的时候,你就可以将训练模型的参数保存下来

    2024年02月15日
    浏览(38)
  • 【文生图】Stable Diffusion XL 1.0模型Full Fine-tuning指南(U-Net全参微调)

    Stable Diffusion是计算机视觉领域的一个生成式大模型,能够进行文生图(txt2img)和图生图(img2img)等图像生成任务。Stable Diffusion的开源公布,以及随之而来的一系列借助Stable Diffusion为基础的工作使得人工智能绘画领域呈现出前所未有的高品质创作与创意。 今年7月Stability A

    2024年02月03日
    浏览(50)
  • 十分钟读完 Meta提出Llama 2模型的经典论文:Llama 2: Open Foundation and Fine-Tuned Chat Models

    随着人工智能技术的飞速发展,大型语言模型(LLMs)已经成为了人类智能助手的代表,它们在需要专业知识的复杂推理任务中表现出色,涵盖了编程、创意写作等多个专业领域。这些模型通过直观的聊天界面与人类互动,迅速获得了广泛的应用和认可。 然而,尽管训练方法

    2024年01月24日
    浏览(48)
  • AI大模型预先学习笔记二:prompt提问大模型、langchain使用大模型框架、fine tune微调大模型

    1)环境准备 ①安装OpenAI库 附加 安装来源 ②生成API key ③设定本地的环境变量 ④代码的准备工作 ⑤在代码运用prompt(简单提问和返回) 2)交互代码的参数备注 temperature:随机性(从0到2可以调节,回答天马行空变化大可以选2) model:跟什么类型的model互动 role:(定义交互

    2024年01月17日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包