机器学习强基计划8-4:流形学习等度量映射Isomap算法(附Python实现)

这篇具有很好参考价值的文章主要介绍了机器学习强基计划8-4:流形学习等度量映射Isomap算法(附Python实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 写在前面

机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编写、测试与文章配套的各个经典算法,不依赖于现有库,可以大大加深对算法的理解。

🚀详情:机器学习强基计划(附几十种经典模型源码)


1 什么是流形?

机器学习强基计划8-4:流形学习等度量映射Isomap算法(附Python实现)

流形(manifolds)是可以局部欧几里得空文章来源地址https://www.toymoban.com/news/detail-425851.html

到了这里,关于机器学习强基计划8-4:流形学习等度量映射Isomap算法(附Python实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习强基计划10-2:详细推导串行集成AdaBoost算法(附Python实现)

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月07日
    浏览(114)
  • 机器学习强基计划9-1:图解匹配追踪(MP)与正交匹配追踪(OMP)算法

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月09日
    浏览(75)
  • 机器学习强基计划8-3:详细推导核化主成分分析KPCA算法(附Python实现)

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2023年04月09日
    浏览(44)
  • 机器学习强基计划10-1:为什么需要集成学习?核心原理是什么?

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月06日
    浏览(68)
  • 机器学习强基计划4-2:通俗理解极大似然估计和极大后验估计+实例分析

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。 🚀详情:机器学习强基计划(附几十种经典模型源码合集) 某

    2023年04月11日
    浏览(44)
  • 机器学习强基计划5-4:图文详解影响流动与有向分离(D-分离)(附Python实现)

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。 🚀详情:机器学习强基计划(附几十种经典模型源码合集) 在

    2024年02月02日
    浏览(44)
  • python机器学习(六)决策树(上) 构造树、信息熵的分类和度量、信息增益、CART算法、剪枝

    模拟相亲的过程,通过相亲决策图,男的去相亲,会先选择性别为女的,然后依次根据年龄、长相、收入、职业等信息对相亲的另一方有所了解。 通过决策图可以发现,生活中面临各种各样的选择,基于我们的经验和自身需求进行一些筛选,把判断背后的逻辑整理成结构图,

    2024年02月14日
    浏览(49)
  • 【一起啃书】《机器学习》第十章 降维与度量学习

    10.1 k k k 近邻学习    k k k 近邻学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的 k k k 个训练样本,然后基于这 k k k 个“邻居”的信息来进行预测。   通常,在分类任务中可使用“投票法”,即选择这

    2024年02月10日
    浏览(77)
  • 【机器学习】分类器性能度量——混淆矩阵及sklearn实现

    记录一下混淆矩阵的学习心得,不写下来老是容易搞混.. 机器学习中,考量二分类问题的分类器性能时,可以将样本的实际类别与分类器预测类别,划分为如下 TN, FP, FN, TP 四种结果,组合起来就是大名鼎鼎的 confusion matrix 混淆矩阵。其中: True,False 表示预测结果与实际分类

    2024年02月10日
    浏览(58)
  • 机器学习Python7天入门计划--第一天-机器学习基础-讲人话

    机器学习Python7天入门计划 - 第一天: 机器学习基础 学习目标: 理解机器学习的基本概念和过程。 掌握基本的数据预处理技巧。 理解线性回归的原理和应用。 学习内容: 机器学习基础 什么是机器学习:机器学习是一种使计算机能够从数据中学习规律和模式的技术。 为什么

    2024年01月20日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包