求解积分:
∫ − ∞ + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x \int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x ∫−∞+∞x2e−x2sin2(x2)dx
解:
令:
I = ∫ − ∞ + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x I=\int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x I=∫−∞+∞x2e−x2sin2(x2)dx
由于是偶函数,所以:
I = 2 ∫ 0 + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x I=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x I=2∫0+∞x2e−x2sin2(x2)dx
下面使用一个小技巧,即通过添加参数 t t t 拓展上述积分:
I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin 2 ( t x 2 ) x 2 d x I(t)=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x I(t)=2∫0+∞x2e−x2sin2(tx2)dx
然后对上式等号左右进行微分:
d d t I ( t ) = d d t 2 ∫ 0 + ∞ e − x 2 sin 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ ∂ ∂ t e − x 2 sin 2 ( t x 2 ) x 2 d x = 2 ∫ 0 + ∞ e − x 2 x 2 2 sin ( t x 2 ) cos ( t x 2 ) x 2 d x = 4 ∫ 0 + ∞ e − x 2 sin ( t x 2 ) cos ( t x 2 ) d x = 4 ∫ 0 + ∞ e − x 2 sin ( 2 t x 2 ) d x \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}I(t)&=\frac{\mathrm{d}}{\mathrm{d}t}2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\int_{0}^{+\infty}\frac{\partial}{\partial t}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\int_{0}^{+\infty}\frac{e^{-x^{2}}}{x^{2}}2\sin\left(tx^{2}\right)\cos\left(tx^{2}\right)x^{2}\mathrm{d}x\\ &=4\int_{0}^{+\infty}e^{-x^{2}}\sin\left(tx^{2}\right)\cos\left(tx^{2}\right)\mathrm{d}x\\ &=4\int_{0}^{+\infty}e^{-x^{2}}\sin\left(2tx^{2}\right)\mathrm{d}x\\ \end{aligned} dtdI(t)=dtd2∫0+∞x2e−x2sin2(tx2)dx=2∫0+∞∂t∂x2e−x2sin2(tx2)dx=2∫0+∞x2e−x22sin(tx2)cos(tx2)x2dx=4∫0+∞e−x2sin(tx2)cos(tx2)dx=4∫0+∞e−x2sin(2tx2)dx
由于:
e i x = cos x + i sin x e^{\mathrm{i}x}=\cos x+\mathrm{i}\sin x eix=cosx+isinx
所以:
I m [ e 2 i t x 2 ] = sin ( 2 t x 2 ) \mathrm{Im}\left[e^{2\mathrm{i}tx^{2}}\right]=\sin\left(2tx^{2}\right) Im[e2itx2]=sin(2tx2)
代入积分方程中:
I ′ ( t ) = I m [ 4 ∫ 0 + ∞ e − x 2 e 2 i t x 2 d x ] = I m [ 4 ∫ 0 + ∞ e − x 2 ( 1 − 2 i t ) d x ] \begin{aligned} I'(t) &=\mathrm{Im}\left[4\int_{0}^{+\infty}e^{-x^{2}}e^{2\mathrm{i}tx^{2}}\mathrm{d}x\right]\\ &=\mathrm{Im}\left[4\int_{0}^{+\infty}e^{-x^{2}(1-2\mathrm{i}t)}\mathrm{d}x\right]\\ \end{aligned} I′(t)=Im[4∫0+∞e−x2e2itx2dx]=Im[4∫0+∞e−x2(1−2it)dx]
考虑到:
∫ 0 + ∞ e − α x 2 d x = 1 2 π α \int_{0}^{+\infty}e^{-\alpha x^{2}}\mathrm{d}x=\frac{1}{2}\sqrt{\frac{\pi}{\alpha}} ∫0+∞e−αx2dx=21απ
代入到前式中:
I ′ ( t ) = 2 π I m [ 1 1 − 2 i t ] \begin{aligned} I'(t) &=2\sqrt{\pi}\mathrm{Im}\left[\frac{1}{\sqrt{1-2\mathrm{i}t}}\right]\\ \end{aligned} I′(t)=2πIm[1−2it1]
将上式等号两端积分:
∫ 0 + ∞ d d t I ( t ) d t = I ( t ) = 2 π I m [ ∫ 0 + ∞ ( 1 − 2 i t ) − 1 / 2 d t ] = 2 π I m [ ( 1 − 2 i t ) 1 / 2 1 2 ( − 2 i ) + C ] = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C \begin{aligned} \int_{0}^{+\infty}\frac{\mathrm{d}}{\mathrm{d}t}I(t)\mathrm{d}t &=I(t)\\ &=2\sqrt{\pi}\mathrm{Im}\left[\int_{0}^{+\infty}\left(1-2\mathrm{i}t\right)^{-1/2}\mathrm{d}t\right]\\ &=2\sqrt{\pi}\mathrm{Im}\left[\frac{(1-2\mathrm{i}t)^{1/2}}{\frac{1}{2}(-2\mathrm{i})}+C\right]\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i}t)^{1/2}\right]+C\\ \end{aligned} ∫0+∞dtdI(t)dt=I(t)=2πIm[∫0+∞(1−2it)−1/2dt]=2πIm[21(−2i)(1−2it)1/2+C]=2πIm[i(1−2it)1/2]+C
考虑到:
I ( t ) = 2 ∫ 0 + ∞ e − x 2 sin 2 ( t x 2 ) x 2 d x I(t)=2\int_{0}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(tx^{2}\right)}{x^{2}}\mathrm{d}x I(t)=2∫0+∞x2e−x2sin2(tx2)dx
此时,令 t = 0 t=0 t=0,
I ( t = 0 ) = 0 I(t=0)=0 I(t=0)=0
则前式的结果:
I ( t = 0 ) = 0 = 2 π I m [ i ( 1 − 2 i t ) 1 / 2 ] + C = 2 π I m [ i ] + C = 2 π + C \begin{aligned} I(t=0) &=0\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i}t)^{1/2}\right]+C\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}\right]+C\\ &=2\sqrt{\pi}+C\\ \end{aligned} I(t=0)=0=2πIm[i(1−2it)1/2]+C=2πIm[i]+C=2π+C
由上得出:
C = − 2 π C=-2\sqrt{\pi} C=−2π
则最初需要解决的积分:
I ( t = 1 ) = ∫ − ∞ + ∞ e − x 2 sin 2 ( x 2 ) x 2 d x = 2 π I m [ i ( 1 − 2 i ) 1 / 2 ] − 2 π \begin{aligned} I(t=1) &=\int_{-\infty}^{+\infty}\frac{e^{-x^{2}}\sin^{2}\left(x^{2}\right)}{x^{2}}\mathrm{d}x\\ &=2\sqrt{\pi}\mathrm{Im}\left[\mathrm{i}(1-2\mathrm{i})^{1/2}\right]-2\sqrt{\pi}\\ \end{aligned} I(t=1)=∫−∞+∞x2e−x2sin2(x2)dx=2πIm[i(1−2i)1/2]−2π
设:
z = 1 − 2 i z=1-2\mathrm{i} z=1−2i
则:
∣ z ∣ = 1 2 + 2 2 = 5 A r g z = tan − 1 ( − 2 1 ) = − tan − 1 ( 2 ) \left|z\right|=\sqrt{1^{2}+2^{2}}=\sqrt{5}\\ \mathrm{Arg}\ z=\tan^{-1}\left(\frac{-2}{1}\right)=-\tan^{-1}(2) ∣z∣=12+22=5Arg z=tan−1(1−2)=−tan−1(2)
所以:
z = 1 − 2 i = 5 e − i tan − 1 ( 2 ) z=1-2\mathrm{i}=\sqrt{5}e^{-\mathrm{i}\tan^{-1}(2)} z=1−2i=5e−itan−1(2)
所以:
1 − 2 i = 5 e − i tan − 1 ( 2 ) 2 \sqrt{1-2\mathrm{i}}=\sqrt{\sqrt{5}}e^{-\mathrm{i}\frac{\tan^{-1}(2)}{2}} 1−2i=5e−i2tan−1(2)
所以:
I m [ i 1 − 2 i ] = I m [ i 5 e − i tan − 1 ( 2 ) 2 ] = 5 cos ( tan − 1 ( 2 ) 2 ) \begin{aligned} \mathrm{Im}\left[ \mathrm{i}\sqrt{1-2\mathrm{i}}\right] &=\mathrm{Im}\left[ \mathrm{i}\sqrt{\sqrt{5}}e^{-\mathrm{i}\frac{\tan^{-1}(2)}{2}}\right]\\ &=\sqrt{\sqrt{5}}\cos\left(\frac{\tan^{-1}(2)}{2}\right) \end{aligned} Im[i1−2i]=Im[i5e−i2tan−1(2)]=5cos(2tan−1(2))
所以:
I ( 1 ) = 2 π 5 cos ( tan − 1 ( 2 ) 2 ) − 2 π = 2 π 5 1 + 5 2 5 − 2 π = 2 π 1 + 5 2 − 2 π = 2 π ( 1 + 5 2 − 1 ) \begin{aligned} I(1) &=2\sqrt{\pi}\sqrt{\sqrt{5}}\cos\left(\frac{\tan^{-1}(2)}{2}\right)-2\sqrt{\pi}\\ &=2\sqrt{\pi}\sqrt{\sqrt{5}}\sqrt{\frac{1+\sqrt{5}}{2\sqrt{5}}}-2\sqrt{\pi}\\ &=2\sqrt{\pi}\sqrt{\frac{1+\sqrt{5}}{2}}-2\sqrt{\pi}\\ &=2\sqrt{\pi}\left(\sqrt{\frac{1+\sqrt{5}}{2}}-1\right)\\ \end{aligned} I(1)=2π5cos(2tan−1(2))−2π=2π5251+5−2π=2π21+5−2π=2π 21+5−1 文章来源:https://www.toymoban.com/news/detail-426260.html
- 参考文献
A beautiful calculus result: solution using Feynman’s technique文章来源地址https://www.toymoban.com/news/detail-426260.html
到了这里,关于Integration using Feynman technique的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!