STM32开发(18)----CubeMX配置RTC

这篇具有很好参考价值的文章主要介绍了STM32开发(18)----CubeMX配置RTC。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

本章介绍使用STM32CubeMX对RTC进行配置的方法,RTC的原理、概念和特点,配置各个步骤的功能,并通过实验方式验证。

一、什么是RTC?

RTC (Real Time Clock),实质是一个 掉电后还继续运行的定时器。从定时器的角度来说,相对于通用定时器 TIM 外设,它十分简单,只有很纯粹的计时和触发中断的功能;但从掉电还继续运行的角度来说,它却是 STM32 中唯一一个具有如此强大功能的外设。所以 RTC外设的复杂之处并不在于它的定时功能,而在于它掉电还继续运行的特性。

当主电源 VDD 断开的情况,为了 RTC 外设掉电继续运行,必须接上锂电池通过 VBAT 引脚给RTC供电。
当主电源 VDD 有效时,由 VDD 给 RTC 外设供电;

无论由什么电源供电, RTC 中的数据都保存在属于 RTC 的备份域中,若主电源 VDD 和 VBAT 都掉电,那么备份域中保存的所有数据将丢失。备份域除了 RTC 模块的寄存器,还有 42 个 16 位的寄存器可以在 VDD 掉电的情况下保存用户程序的数据,系统复位或电源复位时,这些数据也不会被复位。

RTC时钟源

RTC时钟源有三种:高速外部时钟、低速内部时钟 LSI 、低速外部时钟 LSE;使 HSE分频时钟或 LSI 的话,在主电源 VDD 掉电的情况下,这两个时钟来源都会受到影响,因此没法保证 RTC 正常工作。因此 RTC 一般使用低速外部时钟 LSE,在设计中,频率通常为实时时钟模块中常用的 32.768KHz,这是因为 32768 = 2^15,分频容易实现,所以它被广泛应用到 RTC 模块。

下面是RTC的框图
STM32开发(18)----CubeMX配置RTC

RTC备份域

框图中浅灰色的部分都是RTC备份域,在 VDD 掉电时可在 VBAT 的驱动下继续运行。这部分仅包括 RTC 的分频器,计数器,和闹钟控制器。若 VDD 电源有效, RTC 可以触发 RTC_Second(秒中断)、 RTC_Overflow(溢出事件) 和 RTC_Alarm(闹钟中断)。

从结构图可以分析到,其中的定时器溢出事件无法被配置为中断。若 STM32 原本处于待机状态,可由闹钟事件或 WKUP 事件 (外部唤醒事件,属于 EXTI 模块,不属于 RTC) 使它退出待机模式。闹钟事件是在计数器 RTC_CNT的值等于闹钟寄存器 RTC_ALR 的值时触发的。在备份域中所有寄存器都是 16 位的, RTC 控制相关的寄存器也不例外。它的计数器 RTC_CNT 的32 位由 RTC_CNTL 和 RTC_CNTH 两个寄存器组成,分别保存定时计数值的低 16 位和高 16 位。在配置 RTC 模块的时钟时,通常把输入的 32768Hz 的 RTCCLK 进行 32768 分频得到实际驱动计数器的时钟 TR_CLK = RTCCLK/32768= 1 Hz,计时周期为 1 秒,计时器在 TR_CLK 的驱动下计数,即每秒计数器 RTC_CNT 的值加 1。

二、实验过程

1.CubeMX配置

选择芯片stm32f103c6t6,新建工程

STM32开发(18)----CubeMX配置RTC

设置时钟源,最小系统外部晶振8Mhz,作为外部高速HSE时钟源。由于没有外接外部低速晶振,这里低速时钟源选择旁路时钟源。

STM32开发(18)----CubeMX配置RTC

配置时钟树,这里使用官方推荐的配置

STM32开发(18)----CubeMX配置RTC
STM32开发(18)----CubeMX配置RTC
USART1的参数配置如下,波特率115200,传输数据长度为8 Bit,奇偶检验无,停止位1.其他参数默认
STM32开发(18)----CubeMX配置RTC
RTC配置
STM32开发(18)----CubeMX配置RTC
Code Generator中设置只拷贝使用到的库,分离.c和.h文件
STM32开发(18)----CubeMX配置RTC

设置好项目名称和路径,点击GENERATE CODE即可,生成后使用keil5 IDE打开。

STM32开发(18)----CubeMX配置RTC

2.代码实现

在usart.c文件后面添加如下代码,代码中添加了#ifdef宏定义进行条件编译,如果使用GUNC编译,则PUTCHAR_PROTOTYPE 定义为int __io_putchar(int ch)函数,否则定义为int fputc(int ch, FILE *f)函数。

/* USER CODE BEGIN 0 */
#include "stdio.h"
#ifdef __GNUC__
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/**
  * @brief  Retargets the C library printf function to the USART.
  * @param  None
  * @retval None
  */
PUTCHAR_PROTOTYPE
{
  /* Place your implementation of fputc here */
  /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
 
  return ch;
}
/* USER CODE END 0 */

main函数如下,每秒串口打印一次:

RTC_DateTypeDef sdatestructure;
RTC_TimeTypeDef stimestructure;

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    HAL_RTC_GetTime(&hrtc, &stimestructure, RTC_FORMAT_BIN);
    /* Get the RTC current Date */
    HAL_RTC_GetDate(&hrtc, &sdatestructure, RTC_FORMAT_BIN);
    /* Display date Format : yy/mm/dd */
    printf("%02d/%02d/%02d\r\n",2000 + sdatestructure.Year, sdatestructure.Month, sdatestructure.Date);
    /* Display time Format : hh:mm:ss */
    printf("%02d:%02d:%02d\r\n",stimestructure.Hours, stimestructure.Minutes, stimestructure.Seconds);
	HAL_Delay(1000);
  }
  /* USER CODE END 3 */
}

3.实验结果

STM32开发(18)----CubeMX配置RTC

总结

本章介绍了RTC进行配置的方法,原理、概念和特点,配置各个步骤的功能,并通过实验方式验证。文章来源地址https://www.toymoban.com/news/detail-426375.html

到了这里,关于STM32开发(18)----CubeMX配置RTC的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32开发(10)----CubeMX配置基本定时器

    本章介绍使用STM32CubeMX对基本定时器进行配置的方法,STM32F103高性能系列设备包括基本定时器、高级控制定时器、通用定时器、看门狗定时器和 SysTick 定时器,但是STM32F103C6t6上资源比较有限(高级定时器TIM1,通用定时器TIM2和TIM3),没有真正的基本定时器,其实通用定时器和

    2024年02月16日
    浏览(62)
  • 尝试使用CubeMX做stm32开发之十:ADC配置

            参考《STM32中文参考手册_V10》,研究CubeMX中有关ADC的配置。 ADC1 Mode and Configuration:         IN0~IN9:10路12位ADC采样通道,外部模拟量信号输入         Temperature Sensor Channel:MCU内置温度传感器采样通道,用来测量器件周围的温度。在MCU内部与ADC1_IN16通道相连

    2024年02月05日
    浏览(34)
  • STM32CubeIDE开发(二), 全面解析cubeMX图形配置工具

    目录 一、cubeIDE 集成cubeMX 二、STM32CubeMX界面简介         2.1 总界面及支持功能        【1】 功能页面          【2】支持配置的功能栏目          2.2 通信接口外设配置         【1】CAN外设          【2】FMC外设         【3】I2C外设         【4】串

    2023年04月12日
    浏览(72)
  • STM32CubeMX配置STM32G031多通道ADC采集(HAL库开发)

    时钟配置HSI主频配置64M  勾选打开8个通道的ADC  使能连续转换模式  配置好串口,选择异步模式 配置好需要的开发环境并获取代码  修改main.c 串口重定向  串口重定向一定要勾选Use Micro LIB  获取ADC通道值 主函数   串口输出

    2024年02月15日
    浏览(44)
  • STM32CubeMX配置STM32G031多通道ADC + DMA采集(HAL库开发)

     时钟配置HSI主频配置64M  勾选打开8个通道的ADC  使能连续转换模式  添加DMA  DMA模式选择循环模式  使能DMA连续请求 采样时间配置160.5 转换次数为8  配置好8次转换的顺序  配置好串口,选择异步模式 配置好需要的开发环境并获取代码  修改main.c 串口重定向  串口重定向

    2024年02月08日
    浏览(47)
  • STM32CubeMx配置ADC(多通道采集+DMA读取数据)(HAL库开发)

    目录 1、函数配置过程(这是标准库配置过程): 2、STM32CubeMx配置过程  3、main函数源文件 采集5路ADC数据,并用串口printf()函数打印出来。 实验现象:  ADC转换的初始条件: 1、使能 2、触发源条件完成(这个需要自己配置)利用:HAL_ADC_Start_DMA()函数; ADC中HAL开发优势就是,

    2023年04月08日
    浏览(61)
  • 尝试使用CubeMX做stm32开发之十三:Clock Configuration(时钟树配置)

            参考《STM32中文参考手册_V10》,研究CubeMX中有关时钟树配置。 三种不同的时钟源可被用于驱动系统时钟(SYSCLK): HSI振荡器时钟 HSE振荡器时钟 PLL时钟 时钟源选择对应时钟配置寄存器(RCC_CFGR)中的SW[1:0]位。 三种不同的时钟源可被用于驱动系统时钟​​​​ M

    2024年02月16日
    浏览(42)
  • STM32CubeMX教程18 DAC - DMA输出自定义波形

    开发板(正点原子stm32f407探索者开发板V2.4) STM32CubeMX软件(Version 6.10.0) 野火DAP仿真器 keil µVision5 IDE(MDK-Arm) ST-LINK/V2驱动 一台示波器 逻辑分析仪nanoDLA 使用STM32CubeMX软件配置STM32F407开发板的 DAC OUT1实现输出0-3.3V 周期为12.8ms的正弦波形 由于STM32F407的两个DAC输出通道只能自动

    2024年01月19日
    浏览(44)
  • STM32CubeMX 读取DS18B20温度传感器数据串口打印显示

    本文要做的所有工作标题基本都包括了,读取温度传感器的温度数值,再通过串口打印到串口助手; 好多博主大神的教程我按步骤做了之后总是出现程序不报错并且检测不到传感器的情况,后来找到原因并且修改后调试正常。 我用的是普中科技的实验板,主控芯片为STM3210

    2024年02月05日
    浏览(72)
  • 1、STM32CubeMX和STM32Cube库(HAL)详细介绍

    目录 前言 STM32Cube生态 STM32Cube 是什么?         STM32Cube 软件工具套件 STM32Cube Embedded 软件 STM32CubeMX ​编辑         也许大家在学习正点原子或者其他32视频和代码的时候都听过HAL库,是的这是ST官方最新的函数库,而以前的标准库已不再更新与发展。而跟随而来的就是

    2024年02月03日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包