图像的傅里叶变换

这篇具有很好参考价值的文章主要介绍了图像的傅里叶变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

先向大家道歉啊   作为基础知识这内容肯定有人写过   但作为屌丝没时间搜这个出处   也没什么商用价值 就是为了自己好看  收藏不好用 麻烦选别的   真的对不起就是为自己   烦请勿扰   看不惯你了 忍着

图像的傅里叶变换

傅里叶基础

法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被世人铭记的最大的贡献是:他指出任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数(现在称该和为傅里叶级数)。无论函数多么复杂,只要它是周期的,并且满足某些适度的数学条件,都可以用这样的和来表示。即一个复杂的函数可以表示为简单的正弦和余弦之和。甚至非周期函数(单该曲线下的面积是有限的)也可以用正弦和/或余弦乘以加权函数的积分来表示。在这种情况下的公式就是傅里叶公式。 whaosoft aiot http://143ai.com

比如说我们以制作一个饮料的过程,使用时域的角度来看就是这样:

图像的傅里叶变换

这里是什么意思呢,就是说一个饮料的制作需要在18点整放1个单位冰糖、3个单位红豆、2个单位的绿豆、4个单位的西红柿,还有1个单位的纯净水。然后再18:01分只需要假如一个单位的纯净水。后面也是一致。
而频域是怎么描述这件事的呢?

图像的傅里叶变换

具体来说就是说他发现了一个规律,就是说这个制作过程,每分钟都要加入冰糖,每两分钟都要加入红豆,每三分钟都要加入一次绿豆…
对于时域角度我们这样描述。

图像的傅里叶变换

对于频域角度我们这样描述这件事,用直方图表示就是:

图像的傅里叶变换

如果要考虑更精准的时间精度,我们就要引入相位这个概念,它是一个和时间差有关的一个表述。

图像的傅里叶变换

这里我们说明一下就是时域和频域的表述是互逆的,对于时域我们是时间为横坐标,振幅为纵坐标。对于频域我们以频率为横坐标,振幅为纵坐标。但是可以看得出来频域的表述更加简单,但是比较抽象,不容易理解。

傅里叶说:任何连续周期信号,可以由一组适当的正弦曲线组合而成。

注意这里是一组而不是一个。比如对于这样的一个图像:

f(x)=3np.sin(0.8x)+7np.sin(1/3x)+2np.sin(0.2x)

图像的傅里叶变换

看上去是毫无规律可言吧,但是它也可以由一组正弦函数组成。

图像的傅里叶变换

图像的傅里叶变换

他们是可逆的,想不到吧,乱七八糟的东西也有规律了。但是他们就是这样组合而成的吗?不可能吧,所以这里就是不是同时开始的一组余弦函数,在叠加时要体现开始的时间。也就说组合的函数他们的开始时间是不一样的。在这里分别对应0,2,3,看公式就看出来啦。

这里多说一嘴就是傅里叶变换从时域角度来看,这个世界是动态的!从频域角度来看这个世界是静止的。

从数学角度来讲:傅里叶变换将一个任意的周期函数分解成为无穷个正弦函数的和的形式。

从物理角度来讲:傅里叶变换实现了将信号从空间域到频率域的转换。

傅里叶基础numpy实现

python是可以实现傅里叶变换的,这里就要说到三剑客的numpy了。对应的函数是:numpy.fft.fft2返回一个复数数组(complex ndarray)。numpy.fft.fftshift这个函数时表示把将零频率分量移到频谱中心。

图像的傅里叶变换

还要设置频谱的范围20*np.log(np.abs(fshift)),对于图像来说就是255了。

import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread('image\\lena.bmp',0)f = np.fft.fft2(img)fshift = np.fft.fftshift(f)result = 20*np.log(np.abs(fshift))plt.subplot(121)plt.imshow(img, cmap = 'gray')plt.title('original')plt.axis('off')plt.subplot(122)plt.imshow(result, cmap = 'gray')plt.title('result')plt.axis('off')plt.show()

结果是:

图像的傅里叶变换

原图和频谱图像。

  • 傅里叶得到低频、高频信息,针对低频、高频处理能够实现不同的目的。

  • 傅里叶过程是可逆的,图像经过傅里叶变换、逆傅里叶变换后,能够恢复到原始图像。

  • 在频域对图像进行处理,在频域的处理会反映在逆变换图像上。

逆傅里叶numpy实现

对于傅里叶的逆操作这里没有什么可说的,就是把频域图像转回原图像。

图像的傅里叶变换

函数是:numpy.fft.ifft2,那么还有一个操作就是把中间移动回去。numpy.fft.ifftshift。

iimg = np.abs(逆傅里叶变换结果)而第二个图就表示低频部分,边缘就表示为高频部分。

import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread('image\\boat.bmp',0)f = np.fft.fft2(img)fshift = np.fft.fftshift(f)ishift = np.fft.ifftshift(fshift)iimg = np.fft.ifft2(ishift)iimg = np.abs(iimg)plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('original'),plt.axis('off')plt.subplot(122),plt.imshow(iimg, cmap = 'gray')plt.title('iimg'),plt.axis('off')plt.show()

首先我们要进行傅里叶变换,才可以进行逆操作。结果是:

图像的傅里叶变换

完全一致!!!

频域的高通滤波

首先我们来看看到底什么是高频,什么是低频,在图像中如何理解。

低频对应图像内变化缓慢的灰度分量。例如,在一幅大草原的图像中,低频对应着广袤的颜色趋于一致的草原。

高频对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。例如,在一幅大草原的图像中,其中狮子的边缘等信息。

对于滤波我们之前也了解过了,就是说过滤掉不需要的部分。

通过低频的滤波器称为低通滤波器。

通过高频的滤波器称为高通滤波器。

修改傅里叶变换以达到特殊目的,然后计算IDFT返回到图像域。比如我们可以利用傅里叶变换进行,图像增强、图像去噪、边缘检测、特征提取、图像压缩、图像加密等。

衰减高频而通过低频,低通滤波器,将模糊一幅图像。

衰减低频而通过高频,高通滤波器,将增强尖锐的细节,但是会导致图像的对比度降低。

那么我们只需要再滤波中来一个掩膜操作,具体看下面:

图像的傅里叶变换

对于这个掩膜我们这样做:​​​​​​​

rows, cols = img.shapecrow,ccol = int(rows/2) , int(cols/2)fshift[crow-30:crow+30, ccol-30:ccol+30] = 0

具体代码是:​​​​​​​

import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread('image\\boat.bmp',0)f = np.fft.fft2(img)fshift = np.fft.fftshift(f)rows, cols = img.shapecrow,ccol = int(rows/2) , int(cols/2)fshift[crow-30:crow+30, ccol-30:ccol+30] = 0ishift = np.fft.ifftshift(fshift)iimg = np.fft.ifft2(ishift)iimg = np.abs(iimg)plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('original'),plt.axis('off')plt.subplot(122),plt.imshow(iimg, cmap = 'gray')plt.title('iimg'),plt.axis('off')plt.show()

得到后的图象是这样的:

图像的傅里叶变换

可以出来把边缘描绘的非常完整,但是图像的对比度降低了。

傅里叶OpenCV实现

对于OpenCV中的傅里叶变换函数是:返回结果=cv2.dft(原始图像,转换标识)

返回结果是双通道的,第一个是实数部分,第二个通道是虚数部分。

输入图像要首先转换成np.float32格式,np.float32(img)

flags = cv2.DFT_COMPLEX_OUTPUT,输出一个复数阵列

移动频谱部分和numpy一致,是这样的,numpy.fft.fftshift,然后进行返回值=cv2.magnitude(参数1,参数2),这里参数1就是实数部分,参数2就是虚数部分,并且进行𝑑𝑠𝑡 𝐼 = 根号𝑥(𝐼)2 + 𝑦(𝐼)2操作。​​​​​​​

import numpy as npimport cv2import matplotlib.pyplot as pltimg = cv2.imread('image\\lena.bmp',0)dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)dftShift = np.fft.fftshift(dft)result = 20*np.log(cv2.magnitude(dftShift[:,:,0],dftShift[:,:,1]))plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('original'),plt.axis('off')plt.subplot(122),plt.imshow(result, cmap = 'gray')plt.title('result'), plt.axis('off')plt.show()

图像的傅里叶变换

得到的图像和numpy一致。

傅里叶OpenCV逆变换实现

对于傅里叶变换的逆操作,使用OpenCV的函数就是返回结果=cv2.idft(原始数据),然后计算幅度函数仍然是返回值=cv2.magnitude(参数1,参数2),numpy.fft.ifftshift​​​​​​​

import numpy as npimport cv2import matplotlib.pyplot as pltimg = cv2.imread('image\\lena.bmp',0)dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)dftShift = np.fft.fftshift(dft)ishift = np.fft.ifftshift(dftShift)iImg = cv2.idft(ishift)iImg= cv2.magnitude(iImg[:,:,0],iImg[:,:,1])plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('original'), plt.axis('off')plt.subplot(122),plt.imshow(iImg, cmap = 'gray')plt.title('inverse'), plt.axis('off')plt.show()

图像的傅里叶变换

频域的低通滤波

我们这里的想法就是:

图像的傅里叶变换

自己构建一个低通滤波器,把中间位置设置成255,其余部分为0。那么我们做一个与操作,就可以把高频过滤了。​​​​​​​

rows, cols = img.shapecrow,ccol = int(rows/2) , int(cols/2)mask = np.zeros((rows,cols,2),np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 1

低通滤波器构建代码。
然后我们完整代码就是:​​​​​​​

import numpy as npimport cv2import matplotlib.pyplot as pltimg = cv2.imread('image\\lena.bmp',0)dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)dftShift = np.fft.fftshift(dft)rows, cols = img.shapecrow,ccol = int(rows/2) , int(cols/2)mask = np.zeros((rows,cols,2),np.uint8)mask[crow-30:crow+30, ccol-30:ccol+30] = 1fShift = dftShift*maskishift = np.fft.ifftshift(fShift)iImg = cv2.idft(ishift)iImg= cv2.magnitude(iImg[:,:,0],iImg[:,:,1])plt.subplot(121),plt.imshow(img, cmap = 'gray')plt.title('original'), plt.axis('off')plt.subplot(122),plt.imshow(iImg, cmap = 'gray')plt.title('inverse'), plt.axis('off')plt.show()

结果是:

图像的傅里叶变换

图像的傅里叶变换

傅里叶变换有什么应用场景

傅里叶变换可以将一个时域信号转换成在不同频率下对应的振幅及相位,其频谱就是时域信号在频域下的表现,而反傅里叶变换可以将频谱再转换回时域的信号。最简单最直接的应用就是时频域转换,比如在移动通信的LTE系统中,要把接收的信号从时域变成频域,就需要使用FFT(快速傅里叶变换)。又例如对一个采集到的声音做傅立叶变化就能分出好几个频率的信号。比如南非世界杯时,南非人吹的呜呜主拉的声音太吵了,那么对现场的音频做傅立叶变化(当然是对声音的数据做),会得到一个展开式,然后找出呜呜主拉的特征频率,去掉展开式中的那个频率的sin函数,再还原数据,就得到了没有呜呜主拉的嗡嗡声的现场声音。而对图片的数据做傅立叶,然后增大高频信号的系数就可以提高图像的对比度。同样,相机自动对焦就是通过找图像的高频分量最大的时候,就是对好了。文章来源地址https://www.toymoban.com/news/detail-426625.html

到了这里,关于图像的傅里叶变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 图像Radon变换与傅里叶变换(matlab)

    图像变化的介绍 图像变换是将图像从空间域变换到变换域。图像变换的目的是根据图像在变换域的某些性质对其处理。通常这些性质在空间域内很难获取。在变换域内处理结束后,将处理的结果进行反转变换到空间域。 我们所看到的图像是在空域上的,其信息具有很强的相

    2024年02月05日
    浏览(49)
  • 图像处理之傅里叶变换

    1、傅里叶变换的定义 傅里叶变换是在以时间为自变量的“信号”与频率为自变量的“频谱”函数之间的某域研究中较复杂的问题在频域中变得简单起来,从而简化其分析过程;另一方面使信号与系统的物理本质在频域中能更好地被揭示出来。当自变量“时间”或“频率”为

    2024年02月15日
    浏览(41)
  • 最详细的图像傅里叶变换

    数学意义: 傅里叶变换将一个任意的周期函数分解成为无穷个正弦函数的和的形式 物理效果: 傅里叶变换实现了将信号从空间域到频率域的转换 信号分析: 一维傅里叶变换(将杂乱的信号由 时域 转化到 频域 中)一维傅里叶变化是将信号分解为正弦波的和的形式 时域 横轴是

    2024年02月04日
    浏览(35)
  • Python图像处理笔记——傅里叶变换

    图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。(灰度变化得快频率就高,灰度变化得慢频率就低)。傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。 傅立叶变换的物理意义: 将图像的灰度分布函数

    2024年02月08日
    浏览(47)
  • OpenCV图像处理之傅里叶变换

    傅里叶变换: 目的就是得到图像的低频和高频,然后针对低频和高频进行不同的处理。处理完之后,在通过逆变换恢复到图像,这时候对低频和高频的处理就会反映到图像上。 频率 高频:变化剧烈的灰度分量,例如边界。 低频:变化缓慢的灰度分量,例如一天蓝天(相似的

    2024年02月06日
    浏览(61)
  • 【MATLAB图像处理】傅里叶变换--幅度谱、相位谱、逆变换

    fft2()  傅里叶正变换 fftshift()  频谱搬移-直流量(f=0)搬移至频谱中心 幅度谱只包含亮度信息(f),逆变换后由于没有位置信息(x,y)导致无法重构图像;相位谱只包含位置信息(x,y),逆变换后由于没有亮度信息(f)导致重构图像只有轮廓没有亮度。而同时利用幅度谱

    2024年02月11日
    浏览(41)
  • (数字图像处理MATLAB+Python)第四章图像正交变换-第一节:离散傅里叶变换

    一维离散傅里叶变换(Discrete Fourier Transform,DFT) :是一种数学技术,用于将代表离散时间信号的N个复数序列从 时域转换到频域 。DFT被广泛用于许多应用,如音频和图像处理、通信和控制系统。DFT是傅里叶变换的离散版本,傅里叶变换是一种用于分析频域信号的连续数学技

    2023年04月13日
    浏览(94)
  • Python-OpenCV中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(62)
  • OpenCV-Python中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(42)
  • 占空比任意方波的傅里叶级数展开

    常见的方波信号傅里叶级数展开都是占空比为50%,如方波信号傅里叶级数展开,但有的时候信号的占空比不一定是50%的信号,这时我们要对其进行傅里叶变换或者频谱推导的时候,就不太适用了。因此本文将对占空比任意的方波信号的傅里叶级数展开进行推导。搭配转|周期矩

    2024年02月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包