DFMEA 在车用燃料电池空压机设计中的应用

这篇具有很好参考价值的文章主要介绍了DFMEA 在车用燃料电池空压机设计中的应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

摘要:

DFMEA在空压机研发中的应用

氢气具有资源丰富、热值高和无污染等特点,因而是燃料电池汽车最理想的二次能源。空压机作为燃料电池汽车的关键总成,掌握其核心部件的设计和制造技术非常必要。应用传统的设计方法进行相关零部件如空气轴承、压气叶轮、外壳等开发容易出现精度、可靠性及寿命等问题,导致反复修改提高了研发的成本,因而在零部件设计中引入设计潜在失效模式及影响分析(DFMEA)等分析理论有助于提升设计的合理性。本文首先回顾 DFMEA 的产生背景、分类及在汽车行业的应用现状,其次分析了使用时存在的问题,最后以 DFMEA 在空压机核心零部件设计中的应用为例,评估了设计的风险并给出了改进的建议。相关研究有助于提升车用燃料电池空压机的设计水平,进一步缩小与国外的技术差距,促进燃料电池汽车的快速普及。

01、DFMEA的概述

DFMEA 在国外的应用

FMEA 作为一种可靠性分析方法起源于美国。早在上世纪 50 年代初,美国格鲁门飞机公司在研制飞机主操纵系统时就采用了 FMEA 方法,虽未进行危害性分析(Criticality Analysis, CA),但仍取得了良好的效果。从上世纪 60 年代起,该方法开始广泛地应用于航空、航天、舰船、兵器等装备研制中,并逐渐渗透到机械、汽车、医疗设备等民用工业领域,取得了显著的效果。

据统计,产品开发过程中这一阶段约占开发费用的 30%、总时间的 40%。此外,产品质量好坏的 60%~70%取决于产品设计工作,其质量事故有 1/3 以上缘于产品设计不善造成,产品制造成本也在很大程度上取决于设计的合理性。因此,如何在产品设计阶段有效地避免失效非常重要。作为 FMEA 的一种,DFMEA 通过系统分析,确定元器件、零部件、设备、软件在设计中所有可能的故障模式,以及每一故障模式的原因及影响,以便找出潜在的薄弱环节,并提出改进措施。通常用故障影响的严重程度以及发生的概率来估计其危害程度,并根据危害程度确定采取设计改进、使用补偿措施的优先顺序。
 

DFMEA 在国内的应用

20 世纪 60 年代,我国才开始重视并引进可靠性技术。随着可靠性技术的发展,其在工程中的应用不断扩大,带动了 FMEA 的传播和应用。我国制定的《系统可靠性分析技术失效模式和效应分析程序》(GB 826—87)、《装备研制和生产可靠性通用纲领》(GJB 450)及《故障模式、影响及危害性分析程序》(GJB 1391—92)等[15]。DFMEA的应用提升了汽车产品的设计水平,缩短了研发的周期和成本,也促使了其理论性的进一步完善。

DFMEA 存在的问题

尽管 DFMEA 的功能强大,但目前在国内的应用中还存在诸多问题,如企业对 DFMEA 效益与 价值认识不清楚 、 开发周期紧张无法完成DFMEA 检查等问题[16]。具体如下:

1)对 DFMEA 的理解不到位,存在脱节现象。一些企业在产品设计完成后补充一个 DFMEA 表格,后者是在产品失效后进行分析,没有在“事件发生前”采取措施,错过了在设计阶段发现薄弱环节并改进设计的机会,使 DFMEA 的工作流于形式。对于产品的不同研制阶段,应该进行不

同程度、层次的 DFMEA。总之,需要深刻理解DFMEA 的精髓,将其在产品的研制阶段反复完善与迭代。

2)未形成一个跨部门的协调小组,仅依靠个别设计师的经验[17]。在实际中,DFMEA 由具有设计责任的产品设计小组的某个设计人员按照自身的经验进行编制。受工程师自身素质和经验的限制,常常会出现问题根源分析不全面、找不到好的解决方案等,进而导致 DFMEA 的内容苍白无力。DFMEA 需要贯彻“谁设计、谁负责”的原则,更需要设计、工艺、制造、售后及用户等组成一个协调小组,通过集思广益完成相关的内容。

3)DFMEA 是一个动态的过程,需要不断完善和修改[18]。部分企业的 DFMEA 对失败教训、成功设计思路等数据积累不及时,相关参数如严重度、频度及探测度的取值具有随意性,控制措施与失效原因之间没有对应关系,这些都造成了参考资料老旧及与实际情况不符合,失去了指导后续设计的价值。

4)DFMEA 需要完善。尽管频度等参数在使用中参考了国外的标准,但由于国内外的设计及制造水平存在明显的差异,完全照搬不可行。一些参数在相邻的分数之间决断时难以作出判断。实际上 DFMEA 中 的风险系数 (Risk PriorityNumber, RPN)的数值具有不连续性,即使相同的RPN 数值代表的意义也并非完全一致,故完全根据 RPN 数值来判断失效模式存在风险。因此,DFMEA 还需要与其他方法一起共同提高产品的设计水平。

02、DFMEA在空压机研发中的应用

空压机是一个具有多个零部件/总成的复杂系统,直接应用 DFMEA 进行各个层级分析的工作量过大,且零部件之间的耦合关系也会增加完成的难度,因此,本文仅对图1 的几个重要零部件进行分析并给出改进建议。

DFMEA 在车用燃料电池空压机设计中的应用

DFMEA 在车用燃料电池空压机设计中的应用

相关设计参数的取值和计算依据

为了能够对空压机部件的风险进行评估,按照 FMEA 的相关理论对严重度(S)、频度(O)及探测度(D)进行取值,再计算出 RPN 的值 NRP=S×O×D,以确定失效的风险等级并进行持续改进。其中相关参数的取值依据如表 1—表 3 所示[19]。

DFMEA 在车用燃料电池空压机设计中的应用

零部件存在问题梳理

将空压机零部件存在的问题分别进行整理,具体如下:

1)本项目中的空气箔片轴承分为推力轴承和径向轴承两种。其中推力轴承表现出的问题是磨损和坍塌,主要是设计时材料的选择失当。径向轴承的问题是刚度不够,存在高温失效;轴承内孔的粗糙度不合理,存在碰擦和卡死现象。此外,材质的耐磨性差,部件寿命不满足要求。

2)主轴总体分为三段,主轴前段安装压气机,主轴后段为止推盘,中间段为永磁体,三段用护套过盈连接。其存在问题是主轴轴承强度不够,寿命无法保证。主轴外圆和轴承之间的间隙不合理,会导致磨损产生。电机设计也存在问题,无法保证额定的输入功率。

3)压气叶轮存在叶轮与压气机壳配合间隙小于运转时的最小允许间隙,容易发生尺寸干涉。另外,材质选择不当,当前材料易变形甚至脆裂,引起动平衡变化。

4)外壳材料是 6063 铝合金,其中有冷却液流道、空气通道、轴承支撑孔为重要特征。分析发现外壳容易出现疲劳现象 , 材料承受不了200 ℃以上的温度,壳体会出现变形,耐腐蚀的能力也比较差。与扩压体的配合存在问题,可能导致部分零部件无法安装。

DFMEA 在车用燃料电池空压机设计中的应用

应用 DFMEA 进行持续改进

在完成空压机问题梳理的基础上,再结合DFMEA 理论对前期空气箔片轴承、外壳、主轴及叶轮等核心零部件的设计进行了系统的分析和虚拟实验,即分析了潜在失效的模式、后果、原因及风险评估,也对未来拟采取的改进措施进行了整理,具体如表 4 所示。表 4 中 S、O 及 D 的取值借鉴了表 1—表 3。必须指出,DFMEA 表是一个动态文件,需要持续改进直至产品的生命周期结束。项目组根据失效模式的 RPN 门限值和 S 值的阈值来判断是否需要改进,其中规定当 RPN 门限值为 80,或 S 值大于等于 6 时进行改进,修改后的 RPN 值不大于 40。

03、结论

车用燃料电池空压机是复杂且精密的机电一体化系统,用传统的机械设计方法存在开发成本高、可靠性差的问题,将 DFMEA 分析方法引入在设计过程中,通过 CAE 计算及虚拟实验等方法对设计的风险进行评估,发现了空压机设计方面存在的不足。再根据 DFMEA 方法制定了修改意见,通过优化设计参数、更换材料等提高了设计的可靠性,降低了研发的成本。主要结论如下:

1)应用 DFMEA 方法系统整理了空压机重要零部件在设计方面存在的失效问题,较好地消除了设计方面存在的风险。

2)根据失效模式,给出了相应的解决办法,使设计的可靠性大幅提升,空气轴承等重要部件的性能得以明显改进。

来源 |   氢电邦文章来源地址https://www.toymoban.com/news/detail-427024.html

到了这里,关于DFMEA 在车用燃料电池空压机设计中的应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 3串锂电池充电保护板设计

    最近开发肌电反馈仪器,需要支持电池供电,所以设计了一款3串锂电池的充电保护板,特此记录一下。 由于第一次涉及电池供电方面的设计,有什么问题,还望大家批评指正,谢谢。下面直接放原理图 首先是电压抬升模块,满足usb充电需求,SY7208支持5V/2A充电,最高抬升电

    2024年02月15日
    浏览(38)
  • 如何设计一个锂电池充电电路(TP4056)

    这个是个单节18650锂电池的充电模块,这个是个18650的锂电池,18指的是它的直径是18mm,65指的是它的高度为65mm。 这个18650电池的标称电压是3.7V,电池充满时电压为4.2V,一般电池电压越高也就代表它所剩的电量越大。这种锂电池可以反复充电使用。 要设计一个这种18650锂电池

    2024年01月17日
    浏览(78)
  • 热压机PLC数据采集远程监控物联网解决方案

                              热压机PLC数据采集远程监控物联网解决方案 热压机是制造行业中重要的设备之一,广泛应用于木材加工、纸制品生产、塑料加工等领域。随着工业自动化技术的发展,热压机的自动化程度也越来越高。然而,热压机的远程监控仍然是制造企业普遍

    2024年01月25日
    浏览(54)
  • 以太坊燃料费用定价机制Ethereum Gas Fee Pricing Mechanism

            以太坊燃料在交易过程中起着重要作用。从以太坊系统的角度,通过燃料费用提高恶意交易的成本减少攻击者的攻击收益,增强了以太坊交易的安全性,也促使合约开发者优化设计减少合约对以太坊算力的消耗;从交易发起者角度,通过设定燃料相关的参数,以尽

    2024年01月15日
    浏览(62)
  • 41、基于51单片机手机无线充电器系统锂电池存电系统设计

    方案选择 单片机的选择 方案一:AT89C52是美国ATMEL公司生产的低电压,高性能CMOS型8位单片机,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大。其片内的8K程序存储器是FLASH工艺的,这种单

    2024年02月09日
    浏览(53)
  • 3.7V锂电池供电系统设计(含充电、保护、供电及电源切换电路器件选型和原理图)

    一、锂电池   锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池

    2023年04月08日
    浏览(54)
  • 【毕业设计】13-基于单片机的锂电池管理系统(原理图+源码+仿真工程+答辩论文+答辩PPT)

    包含此题目毕业设计全套资料: 原理图工程文件 源码工程 仿真工程 论文低重复率,字数:27821。 详情请私信! 研究基本内容: 1.了解在以单片机为基础上的动力锂电池管理系统的研究目的、意义及研究现状; 2.利用单片机实动力电池电压、电流、温度检测的功能,并完成电

    2024年02月19日
    浏览(55)
  • 毕业设计-基于深度学习的锂电池极片缺陷检测算法 YOLO python 卷积神经网络 人工智能

    目录 前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 YOLOv5算法 2.2 改进后的YOLOv5算法 三、锂电池缺陷检测的实现 3.1 数据集 3.2 网络训练 3.3 网络性能分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业

    2024年02月03日
    浏览(56)
  • 通过限制电池充电容量延长笔记本电脑的电池寿命

    随着时间的推移,您会注意到笔记本电脑的电池已经开始退化,并且无法提供与以前相同的备用时间。这是因为所有电池,无论其材料如何,都会失去保持电荷的能力。因此,导致备份时间减少。 如果您认为自己拥有可以买到的最好的电池并且有很长的备用时间,那么您的笔

    2024年02月03日
    浏览(69)
  • Windows 笔记本电脑电池寿命管理:如何查看电池循环计数?

    您可能知道,充电电池是消耗品。 虽然您的笔记本电脑中的电池有望使用数年,但随着您使用它,其性能会随着时间的推移而降低。 这意味着即使在 100% 充电的情况下,电池在两年后的使用寿命也不会像新电池一样长。 要量化您对设备电池的磨损程度,您可以检查其电池循

    2024年02月07日
    浏览(114)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包