【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

无人驾驶技术是当前社会的热门技术之一,无人驾驶车辆的应用可以很好地解决环境污染和交通拥堵两大主要社会问题。而在无人驾驶车辆的所有技术中,车辆的底层控制技术和路径跟踪技术是无人车的基础技术。本文用于无人地面车辆的路径跟踪算法,详情可见运行结果图。 

📚2 运行结果

运行视频

【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)

【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)

【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)

部分代码:

clear;
clc;
close all;
addpath('Params','TargetCourse');

%% Choose Vehicle Algrithm Course 
Vehicle = 'C-Class-Hatchback'; 
% B-Class-Hatchback C-Class-Hatchback
path_tracking_alg = 'Kinematics MPC V W'; 
% Pure Pursuit,Stanley,Kinematics MPC V Delta,Dynamics MPC,Kinematics MPC V W
roadmap_name = 'eight';
% eight road double

%% Get Params
Reference = getTargetCourseParams(roadmap_name);
Reference = splinfy(Reference);
VehicleParams = getVehicleParams(Vehicle);
AlgParams = getAlgParams(path_tracking_alg,VehicleParams);
Reference.type = roadmap_name;
VehicleParams.type = Vehicle;
AlgParams.type = path_tracking_alg;
time_step = AlgParams.ts;

%% Initialize State
x0 = Reference.cx(1000);y0 = Reference.cy(1000);yaw0 = Reference.cyaw(1000);s0 = Reference.s(1000);
delta0 = 0;v0 = 20;w0 = 0;vy0=0;
desired_velocity = 20;
desired_angular_v = 0;
desired_delta = 0;

i = 0;simulation_time = 0;
Vehicle_State = [x0,y0,yaw0,s0,v0,w0,vy0];
Control_State = delta0;

%% Log
log.i=i;log.time=simulation_time;
log.X=x0;log.Y=y0;log.Yaw=yaw0;log.Odometry=s0;
log.Vx=v0;log.Angular_V=w0;
log.delta=delta0;
log.error=0;log.solvertime=0;

[path_figure,result_figure,delta_line,error_line,solve_time_line]= Visualization_Init(AlgParams, Reference,... 
    VehicleParams, Vehicle_State, Control_State,simulation_time);

isGoal = norm(Vehicle_State(1:2)-[Reference.cx(end),Reference.cy(end)])<1 && (Reference.s(end)-Vehicle_State(4))<1;
disp([path_tracking_alg,' ',roadmap_name,' simulation start!']);

%% path tracking algrithm
while ~isGoal
    tic;
    i = i + 1;
    simulation_time = simulation_time + time_step;
    tic;
    switch AlgParams.type
        case "Pure Pursuit"
            [steer_cmd,error,preview_point] = UGV_PP(Reference,VehicleParams,AlgParams,Vehicle_State,Control_State);
        case "Stanley"
            [steer_cmd,error,preview_point] = UGV_Stanley(Reference,VehicleParams,AlgParams,Vehicle_State,Control_State);
        case "Kinematics MPC V W"
            Control_ref=[desired_velocity,desired_angular_v];
            [control_cmd,error,MPCprediction] = UGV_Kinematics_MPC_V_W(Reference,VehicleParams,AlgParams,Vehicle_State,Control_ref);
        case "Kinematics MPC V Delta"
            Control_ref=[desired_velocity,desired_delta];
            [control_cmd,error,MPCprediction] = UGV_Kinematics_MPC_V_Delta(Reference,VehicleParams,AlgParams,Vehicle_State,Control_ref);
        case "Dynamics MPC"
            Control_State=[delta0,desired_velocity];
            [steer_cmd,error,MPCprediction,update_state] = UGV_Dynamics_MPC(Reference,VehicleParams,AlgParams,Vehicle_State,Control_State);
    end
    toc;
    
%% update vehicle state
    if AlgParams.type == "Pure Pursuit" || AlgParams.type == "Stanley" || AlgParams.type == "Dynamics MPC" || AlgParams.type == "Kinematics MPC V Delta"
        wheel_base = VehicleParams.wheel_base;t=time_step;
        if AlgParams.type ~= "Kinematics MPC V Delta"
            delta=steer_cmd;v1=v0;
        else
            delta=control_cmd(2);v1=control_cmd(1);
        end
        x0=Vehicle_State(1);y0=Vehicle_State(2);yaw0=Vehicle_State(3);s0=Vehicle_State(4);v0=Vehicle_State(5);
        x1=x0+v0*cos(yaw0)*t;y1=y0+v0*sin(yaw0)*t;yaw1=yaw0+v0/wheel_base*tan(delta)*t;s1=s0+v0*t;w1=(yaw1-yaw0)/t;
        Vehicle_State=[x1,y1,yaw1,s1,v1,w1];
        Vehicle_State(3)=wrapTo2Pi(Vehicle_State(3));
        if AlgParams.type == "Dynamics MPC"
            Vehicle_State(7)=update_state(2);
        end
       
    elseif AlgParams.type == "Kinematics MPC V W"
        wheel_base = VehicleParams.wheel_base;t=time_step;
        x0=Vehicle_State(1);y0=Vehicle_State(2);yaw0=Vehicle_State(3);s0=Vehicle_State(4);
        v1=control_cmd(1);w1=control_cmd(2);
        x1=x0+v1*cos(yaw0)*t;y1=y0+v1*sin(yaw0)*t;yaw1=yaw0+w1*t;s1=s0+v1*t;
        Vehicle_State=[x1,y1,yaw1,s1,v1,w1];
        Vehicle_State(3)=wrapTo2Pi(Vehicle_State(3));
        delta = atan(w1*wheel_base/v1);
    end
    
    log.i(end+1)=i;log.time(end+1)=simulation_time;
    log.X(end+1)=x1;log.Y(end+1)=y1;log.Yaw(end+1)=yaw1;log.Odometry(end+1)=s1;
    log.Vx(end+1)=v1;log.Angular_V(end+1)=w1;log.delta(end+1)=delta;
    log.error(end+1)=error;log.solvertime(end+1)=toc;
    
%% show animation
    set(groot, 'CurrentFigure', path_figure);cla;
    switch (Reference.type)
        case {'eight' 'road'}
            axis([x1-40,x1+40,y1-40,y1+40]);
            plot_car(VehicleParams, Vehicle_State, delta);
        case {'double','Emergency'}
            
    end
    h1=plot(Reference.cx, Reference.cy, '-k.','LineWidth',3, 'markersize',3,'DisplayName','Target Trajectory');
    h2=plot(log.X, log.Y, '-b.','LineWidth', 3,'markersize',3,'DisplayName','Real Trajectory');
    h3=plot(Vehicle_State(1),Vehicle_State(2),'Marker','p','MarkerFaceColor','red','MarkerSize',12.0,'DisplayName','CoG');
    switch (AlgParams.type)
        case {"Pure Pursuit","Stanley"}
            h4=plot(preview_point(1),preview_point(2),'d','MarkerFaceColor','yellow','MarkerSize',12,'DisplayName','Preview Point');
            legend([h1 h2 h3 h4],{'Target Trajectory','Real Trajectory','CoG','Preview Point'});
        case {"Kinematics MPC V W","Kinematics MPC V Delta","Dynamics MPC"}
            h4=plot(MPCprediction(1,:),MPCprediction(2,:), '-y.','LineWidth', 3,'markersize',3,'DisplayName','Prediction Trajectory');
            legend([h1 h2 h3 h4],{'Target Trajectory','Real Trajectory','CoG','MPC Prediction Trajectory'});
    end
    title(['Time[s]:',num2str(round(simulation_time,3),3),'s',' Velocity[m/s]:',num2str(round(v1,2))]);
    
    set(groot, 'CurrentFigure', result_figure);
    set(delta_line,'Xdata',log.time,'Ydata',log.delta/pi*180);
    set(error_line,'Xdata',log.time,'Ydata',log.error);
    set(solve_time_line,'Xdata',log.time,'Ydata',log.solvertime);
    pause(0.0001);
    isGoal = norm(Vehicle_State(1:2)-[Reference.cx(end),Reference.cy(end)])<1^2 && (Reference.s(end)-Vehicle_State(4))<1;
end
disp([path_tracking_alg,' Get Goal ! simulation stop!']);


%         syms x(t) y(t) yaw(t) s(t);
%         eqn1 = diff(x,t) == v0*cos(yaw); eqn2 = diff(y,t) == v0*sin(yaw);
%         eqn3 = diff(yaw,t) == v0*tan(steer_cmd)/wheel_base; eqn4 = diff(s,t) == v0;
%         cond1 = x(0) == x0;cond2 = y(0) == y0;cond3 = yaw(0) == yaw0;cond4 = s(0) == s0;
%         Up_State = dsolve(eqn1,eqn2,eqn3,eqn4,cond1,cond2,cond3,cond4);
%         t=time_step;
%         Vehicle_State = [eval([Up_State.x,Up_State.y,Up_State.yaw,eval(Up_State.s)]),v0,(eval(Up_State.yaw)-yaw0)/t];

%         wheel_base = VehicleParams.wheel_base;
%         x0=Vehicle_State(1);y0=Vehicle_State(2);yaw0=Vehicle_State(3);s0=Vehicle_State(4);
%         v0=control_cmd(1);w0=control_cmd(2);
%         syms x(t) y(t) yaw(t) s(t);
%         eqn1 = diff(x,t) == v0*cos(yaw); eqn2 = diff(y,t) == v0*sin(yaw);
%         eqn3 = diff(yaw,t) == w0; eqn4 = diff(s,t) == v0;
%         cond1 = x(0) == x0;cond2 = y(0) == y0;cond3 = yaw(0) == yaw0;cond4 = s(0) == s0;
%         Up_State = dsolve(eqn1,eqn2,eqn3,eqn4,cond1,cond2,cond3,cond4);
%         t=time_step;
%         Vehicle_State = [eval([Up_State.x,Up_State.y,Up_State.yaw,eval(Up_State.s)]),v0,(eval(Up_State.yaw)-yaw0)/t];

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]樊晓楠. 无人观光车底层控制系统改造及路径跟踪算法研究[D].长安大学,2019.文章来源地址https://www.toymoban.com/news/detail-427425.html

🌈4 Matlab代码实现

到了这里,关于【无人车】用于无人地面车辆的路径跟踪算法(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包