Synchronized与锁升级

这篇具有很好参考价值的文章主要介绍了Synchronized与锁升级。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.先从阿里及其他大厂面试题说起

2.路线总纲

3.Synchronized的性能变化 

4.Synchronized锁种类及升级步骤

4.1多线程访问情况:3种

4.2升级流程

4.3无锁

4.4偏向锁

4.5轻量级锁

4.6重量级锁

4.7总结

5.锁消除和锁粗化


1.先从阿里及其他大厂面试题说起

1.谈谈你对Synchronized的理解

2.Synchronized的锁升级

3.线程池几个参数说下,项目中如何根据实际场景设置参数?

4、reentrantlock 实现原理,简单说下aas
5、synchronized实现原理,monitor对象什么时候生成的?知道monitor的monitorenter和monitorexi这两个是怎么保证同步的吗,或者说,这两个操作计算机底层是如何执行的
6、刚刚你提到了synchronized的优化过程,详细说一下吧。 偏向锁和轻量级锁有什么区别?

2.路线总纲

阿里要求:

【强制】高并发时,同步调用应该去考量锁的性能损耗。能用无锁数据结构,就不要用锁;能锁区块,就不要锁整个方法体;能用对象锁,就不要用类锁。
说明:尽可能使加锁的代码块工作量尽可能的小,避免在锁代码块中调用 RPC方法。

synchronized 锁优化的背景

用锁能够实现数据的安全性,但是会带来性能下降
无锁能够基于线程并行提升程序性能,但是会带来安全性下降
求平衡???

Synchronized与锁升级

synchronized锁:由对象头中的Mark Word根据锁标志位的不同而被复用及锁升级策略

3.Synchronized的性能变化 

java5以前,只有Synchronized,这个是操作系统级别的重量级操作

Synchronized与锁升级

为什么每一个对象都可以成为一个锁????

Synchronized与锁升级

Synchronized与锁升级 Synchronized与锁升级

Synchronized与锁升级 Synchronized与锁升级

java6开始,优化Synchronized

Java 6之后,为了减少获得锁和释放锁所带来的性能消耗,引入了轻量级锁和偏向锁

需要有个逐步升级的过程,别一开始就捅到重量级锁

4.Synchronized锁种类及升级步骤

4.1多线程访问情况:3种

1)只有一个线程来访问,有且唯一Only One

2)有多个线程(2个线程A、B来交替访问)

3)竞争激烈,更多个线程来访问

4.2升级流程

synchronized用的锁是存在Java对象头里的Mark Word中

锁升级功能主要依赖MarkWord中锁标志位和释放偏向锁标志位

64位标记图

Synchronized与锁升级

 锁指向,请牢记:

偏向锁:MarkWord存储的是偏向的线程ID;

轻量锁:MarkWord存储的是指向线程栈中Lock Record的指针;

重量锁:MarkWord存储的是指向堆中的monitor对象的指针;

4.3无锁

Synchronized与锁升级

4.4偏向锁

偏向锁:单线程竞争

当线程A第一次竞争到锁时,通过操作修改Mark Word中的偏向线程ID、偏向模式。

如果不存在其他线程竞争,那么持有偏向锁的线程将永远不需要进行同步。

主要作用

当段同步代码一直被同一个线程多次访问,由于只有一个线程那么该线程在后续访问时便会自动获得锁。

Hotspot 的作者经过研究发现,大多数情况下:

多线程的情况下,锁不仅不存在多线程竞争,还存在锁由同一个线程多次获得的情况

偏向锁就是在这种情况下出现的,它的出现是为了解决只有在一个线程执行同步时提高性能

备注:
偏向锁会偏向于第一个访问锁的线程,如果在接下来的运行过程中,该锁没有被其他的线程访问,则持有偏向锁的线程将永远不需要触发同步。也即偏向锁在资源没有竞争情况下消除了同步语句,懒的连CAS操作都不做了,直接提高程序性能。

偏向锁的持有说明:

理论落地:
在实际应用运行过程中发现,“锁总是同一个线程持有,很少发生竞争”,也就是说锁总是被第一个占用他的线程拥有,这个线程就是锁的偏向线程

那么只需要在锁第一次被拥有的时候,记录下偏向线程ID。这样偏向线程就一直持有着锁(后续这个线程进入和退出这段加了同步锁的代码块时,不需要再次加锁和释放锁。而是直接会去检查锁的MarkWord里面是不是放的自己的线程ID)。

如果相等,表示偏向锁是偏向于当前线程的,就不需要再尝试获得锁了,直到竞争发生才释放锁。以后每次同步,检查锁的偏向线程ID与当前线程ID是否一致,如果一致直接进入同步。无需每次加锁解锁都去CAS更新对象头。如果自始至终使用锁的线程只有一个,很明显偏向锁几乎没有额外开销,性能极高。

如果不等,表示发生了竞争,锁已经不是总是偏向于同一个线程了,这个时候会尝试使用CAS来替换MarkWord里面的线程ID为新线程的ID,

竞争成功,表示之前的线程不存在了,MarkWord里面的线程ID为新线程的ID,锁不会升级,仍然为偏向锁;

竞争失败,这时候可能需要升级变为轻量级锁,才能保证线程间公平竞争锁。

注意,偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程是不会主动释放偏向锁的。

技术实现:

一个synchronized方法被一个线程抢到了锁时,那这个方法所在的对象就会在其所在的Mark Word中将偏向锁修改状态位,同时还会有占用前54位来存储线程指针作为标识。若该线程再次访问同一个synchronized方法时,该线程只需去对象头的Mark Word 中去判断一下是否有偏向锁指向本身的ID,无需再进入Monitor 去竞争对象了。
Synchronized与锁升级

案例说明 

Synchronized与锁升级

Synchronized与锁升级

偏向锁JVM命令 

实际上偏向锁在JDK1.6之后是默认开启的,但是启动时间有延迟(4秒),
所以需要添加参数-XX:BiasedLockingStartupDelay=0,让其在程序启动时立刻启动

开启偏向锁:

-XX:+UseBiasedLocking -XX:BiasedLockingStartupDelay=0

关闭偏向锁:关闭之后程序默认会直接进入------->轻量级锁状态
-XX:-UseBiasedLocking

代码说明

Synchronized与锁升级

Synchronized与锁升级

偏向锁的撤销

 当有另外线程逐步来竞争锁的时候,就不能再使用偏向锁了,要升级为轻量级锁。

竞争线程尝试CAS更新对象头失败,会等待到全局安全点(此时不会执行任何代码)撤销偏向锁。

偏向锁的撤销说明

偏向锁使用一种等到竞争出现才释放锁的机制,只有当其他线程竞争锁时,持有偏向锁的原来线程才会被撤销。

撤销需要等待全局安全点(该时间点上没有字节码正在执行),同时检查持有偏向锁的线程是否还在执行:

①第一个线程正在执行synchronized方法(处于同步块),它还没有执行完,其它线程来抢夺,该偏向锁会被取消掉并出现锁升级。

此时轻量级锁由原持有偏向锁的线程持有,继续执行其同步代码,而正在竞争的线程会进入自旋等待获得该轻量级锁。

②第一个线程执行完成synchronized方法(退出同步块),则将对象头设置成无锁状态并撤销偏向锁,重新偏向。
Synchronized与锁升级

整体步骤流程图示

Synchronized与锁升级

Java15逐步废弃偏向锁,默认不开启偏向锁

4.5轻量级锁

轻量级锁:多线程竞争,但是任意时刻最多只有一个线程竞争,即不存在锁竞争太过激烈的情况,也就没有线程阻塞。

主要作用

有线程来参与锁的竞争,但是获取锁的冲突时间极短。

本质就是自旋锁CAS

轻量级锁的获取

轻量级锁是为了在线程近乎交替执行同步块时提高性能。

主要目的: 在没有多线程竞争的前提下,通过CAS减少重量级锁使用操作系统互斥量产生的性能消耗,说白了先自旋,不行才升级阻塞。

升级时机:当关闭偏向锁功能或多线程竞争偏向锁会导致偏向锁升级为轻量级锁

假如线程A已经拿到锁,这时线程B又来抢该对象的锁,由于该对象的锁已经被线程A拿到,当前该锁已是偏向锁了。
而线程B在争抢时发现对象头Mark Word中的线程ID不是线程B自己的线程ID(而是线程A),那线程B就会进行CAS操作希望能获得锁。

此时线程B操作中有两种情况:

如果锁获取成功,直接替换Mark Word中的线程ID为B自己的ID(A→B),重新偏向于其他线程(即将偏向锁交给其他线程,相当于当前线程“被“释放了锁),该锁会保持偏向锁状态,A线程Over,B线程上位;

如果锁获取失败,则偏向锁升级为轻量级锁(设置偏向锁标识为0并设置锁标志位为00),此时轻量级锁由原持有偏向锁的线程持有,继续执行其同步代码,而正在竞争的线程B会进入自旋等待获得该轻量级锁。

补充

轻量级锁的加锁

JVM会为每个线程在当前线程的栈帧中创建用于存储锁记录的空间,官方称为Displaced Mark Word。若一个线程获得锁时发现是轻量级锁,会把锁的MarkWord复制到自己的Displaced Mark Word里面。然后线程尝试用CAS将锁的MarkWord替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,表示Mark Word已经被替换成了其他线程的锁记录,说明在与其它线程竞争锁,当前线程就尝试使用自旋来获取锁。

自旋CAS:不断尝试去获取锁,能不升级就不往上捅,尽量不要阻塞

轻量级锁的释放

在释放锁时,当前线程会使用CAS操作将Displaced Mark Word的内容复制回锁的Mark Word里面。如果没有发生竞争,那么这个复制的操作会成功。如果有其他线程因为自旋多次导致轻量级锁升级成了重量级锁,那么CAS操作会失败,此时会释放锁并唤醒被阻塞的线程。

JVM命令

关闭偏向锁:关闭之后程序默认会直接进入------->轻量级锁状态
-XX:-UseBiasedLocking

自旋达到一定次数和程度

Java6之前

默认启用,默认情况下自旋的次数是10次,或者自旋线程数超过cpu核数一半。

上述了解即可,别用了。

Java6之后

变为自适应自旋锁。

自适应意味着自旋的次数不是固定不变的,而是根据:拥有锁线程的状态来决定,或者同一个锁上一次自旋的时间。

大致原理

线程如果自旋成功了,那下次自旋的最大次数会增加,因为JVM认为既然上次成功了,那么这一次也很大概率会成功。

反之

如果很少会自旋成功,那么下次会减少自旋的次数甚至不自旋,避免CPU空转。

轻量级锁与偏向锁的区别

争夺轻量级锁失败时,自旋尝试抢占锁。

轻量级锁每次退出同步块都需要释放锁,而偏向锁是在竞争发生时才释放锁

4.6重量级锁

适用于:有大量的线程参与锁的竞争,冲突性很高。

重量级锁原理

Java中synchronized的重量级锁,是基于进入和退出Monitor对象实现的。在编译时会将同步块的开始位置插入monitor enter指令,在结束位置插入monitor exit指令。

当线程执行到monitor enter指令时,会尝试获取对象所对应的Monitor所有权,如果获取到了,即获取到了锁,会在Monitor的owner中存放当前线程的id,这样它将处于锁定状态,除非退出同步块,否则其他线程无法获取到这个Monitor。

4.7总结

锁升级以后,hashcode去哪了?

锁升级为轻量级或重量级锁后,Mark Word中保存的分别是线程栈帧里的锁记录指针重量级锁指针,已经没有位置再保存哈希码,GC年龄了,那么这些信息被移动到哪里去了呢?

用书中的一段话来描述 锁和hashcode 之前的关系:

        在Java语言里面一个对象如果计算过哈希码,就应该一直保持该值不变(强烈推荐但不强制,因为用户可以重载hashCodc0方法按自己的意愿返回哈希码),否则很多依赖对象哈希码的API都可能存在出错风险。而作为绝大多数对象哈希码来源的Object:hashCode0方法,返回的是对象的一致性哈希码(Identity Hash Code),这个值是能强制保证不变的,它通过在对象头中存储计算结果来保证第一次计算之后,再次调用该方法取到的哈希码值永远不会再发生改变。因此,当一个对象已经计算过一致性哈希码后,他就再也无法进入偏向锁状态了;而当一个对象当前正处于偏向锁状态,又收到需要计算其一致性哈希码请求时,它的偏向状态会被立即撤销,而且锁会膨胀为重量级锁。在重量级锁的实现中,对象头指向了重量级锁的位置,代表重量级锁的ObicctMonitor类里有字段可以记录非加锁状态(标志位为“01”)下的Mark Word,其中自然可以存储原来的哈希码

在无锁状态下,Mark Word中可以存储对象的identity hash code值。当对象的hashCode()方法第一次被调用时,JVM会生成对应的identity hash code值并将该值存储到Mark Word中。

对于偏向锁,在线程获取偏向锁时,会用Thread ID和epoch值覆盖identity hash code所在的位置。如果一个对象的hashCode()方法已经被调用过一次之后,这个对象不能被设置偏向锁。因为如果可以的话,那Mark Word中的identity hash code必然会被偏向线程ld给覆盖,这就会造成同一个对象前后两次调用hashCode()方法得到的结果不一致。

升级为轻量级锁时,JVM会在当前线程的栈帧中创建一个锁记录(Lock Record)空间,用于存储锁对象的Mark Word拷贝,该拷贝中可以包含identity hash code,所以轻量级锁可以和identity hash code共存,哈希码和GC年龄自然保存在此,释放锁后会将这些信息写回到对象头。

升级为重量级锁后,Mark Word保存的重量级锁指针,代表重量级锁的ObjectMonitor类里有字段记录非加锁状态下的Mark Word,锁释放后也会将信息写回到对象头。

说明:

1)当一个对象已经计算过identity hash  code,它就无法进入偏向锁状态,跳过偏向锁,直接升级轻量级锁。

2)偏向锁过程中遇到一致性哈希计算请求,立马撤销偏向模式,膨胀为重量级锁。

各种锁优缺点、synchronized锁升级和实现原理

Synchronized与锁升级

 synchronized锁升级过程总结:一句话,就是先自旋,不行再阻塞。
实际上是把之前的悲观锁(重量级锁)变成在一定条件下使用偏向锁以及使用轻量级(自旋锁CAS)的形式。

synchronized在修饰方法和代码块在字节码上实现方式有很大差异,但是内部实现还是基于对象头的MarkWord来实现的。
JDK1.6之前synchronized使用的是重量级锁,JDK1.6之后进行了优化,拥有了无锁->偏向锁->轻量级锁->重量级锁的升级过程,而不是无论什么情况都使用重量级锁。

偏向锁:适用于单线程适用的情况,在不存在锁竞争的时候进入同步方法/代码块则使用偏向锁。

轻量级锁:适用于竞争较不激烈的情况(这和乐观锁的使用范围类似),存在竞争时升级为轻量级锁
轻量级锁采用的是自旋锁,如果同步方法/代码块执行时间很短的话,采用轻量级锁虽然会占用cpu资源但是相对比使用重量级锁还是更高效。

重量级锁:适用于竞争激烈的情况,如果同步方法/代码块执行时间很长,那么使用轻量级锁自旋带来的性能消耗就比使用重量级锁更严重,这时候就需要升级为重量级锁。

5.锁消除和锁粗化

JIT(Just In Compiler),一般翻译为即时编译器。

锁消除

从JIT角度看相当于无视它,synchronized(o)不存在了,这个锁对象并没有被共用扩散到其它线程使用,极端的说就是根本没有加这个锁对象的底层机器码,消除了锁的使用。(说白了就是没有使用同一把锁)

public class LockClearUPDemo {
    private void m1(){
        //锁消除问题,JIT编译器会无视它,说白了就是没有使用同一把锁
        Object o = new Object();
        synchronized (o){
            System.out.println(Thread.currentThread().getName()+"-----"+o.hashCode());
        }
    }
    public static void main(String[] args) {
        LockClearUPDemo lockClearUPDemo = new LockClearUPDemo();

        for (int i = 0; i < 10; i++) {
            new Thread(()->{
                lockClearUPDemo.m1();
            },String.valueOf(i)).start();
        }
    }
}

锁粗化

假如方法中首尾相接,前后相邻的都是同一个锁对象,那JIT编译器就会把这几个synchronized块合并成一个大块,加粗加大范围,一次申请锁使用即可,避免次次的申请和释放锁,提升了性能。

        Object o = new Object();
        new Thread(()->{
            synchronized (o){
                System.out.println("111");
            }
            synchronized (o){
                System.out.println("222");
            }
            synchronized (o){
                System.out.println("333");
            }

            //锁粗化,上面3个同步代码块在JIT编译时合成一个大块,如下
            synchronized (o){
                System.out.println("111");
                System.out.println("222");
                System.out.println("333");
            }
        }).start();

小总结

没有锁:自由自在
偏向锁:唯我独尊
轻量锁:楚汉争霸
轻量锁:楚汉争霸文章来源地址https://www.toymoban.com/news/detail-427576.html

到了这里,关于Synchronized与锁升级的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 近日遇到数据库及其他问题

    使用 以下语句,在上亿数据的表中执行速度较慢 可使用下面两种方式 或者 在编译完class文件,替换war包里面对应class文件后,报Could not reload resource bundles java.lang.NoSuchFieldException: cacheList,找不到对应action,在网上查找资料,发现可能是JDK版本问题,原来使用JDK8 编译有问题,

    2024年02月01日
    浏览(47)
  • 矩阵的其他性质及其运算技巧

    1.单位矩阵(E):类似实数运算中的“1”,任何矩阵乘单位矩阵都等于该矩阵本身,但不同矩阵对应的单位矩阵不同。 2.矩阵乘法满足结合律和分配律,但不满足交换律,原因见三。 3.当两个不同阶矩阵相乘时,如果可以运算,则运算后会得到一个矩阵,而交换两个矩阵的位

    2024年02月06日
    浏览(47)
  • RabbitMQ和spring boot整合及其他内容

    在现代分布式应用程序的设计中,消息队列系统是不可或缺的一部分,它为我们提供了解耦组件、实现异步通信和确保高性能的手段。RabbitMQ,作为一款强大的消息代理,能够协助我们实现这些目标。在本篇CSDN博客中,我们将探讨一些高级主题,包括RabbitMQ与Spring Boot的整合、

    2024年02月07日
    浏览(44)
  • SpringBoot及其他框架乱码问题的原因和解决

    乱码问题是指当我们在浏览器或者其他客户端发送或接收数据时,由于编码格式不一致或者不正确,导致数据显示为一些无法识别的字符,如 ???? 或者 鍙戠敓涓枃涔辩爜闂 。这种问题会影响用户体验和数据传输的准确性。 乱码问题的根本原因是编码格式不匹配。编码

    2024年02月10日
    浏览(48)
  • [记录]Cloudflare之WARP及其他app的DNS测试

    (本文仅作研究学习安全连接使用,无非法用途) 本人用的是苹果手机,如果想用机场需要买小飞机,恰恰又没Visa卡。 用第三方客户端罢,还靠不住。 于是我就想到了GFW的工作方式: DNS拦截,SNI审查,IP黑洞。 除了谷歌系网站全部是IP黑洞(况且我也不经常用),其他的基

    2024年02月08日
    浏览(43)
  • 基于Pytorch的身份证及其他证件检测矫正模型应用

    前言         在做身份证和其他证件识别的时候,图片基本都不是摆正的状态,此时在进行OCR文字识别的提取文字信息的时候会出现很多误差,如何将证件摆正,再进行OCR文字识别就可以大大提高准确率。 准备工作  1、Python环境,在Python官网下载安装 2、项目代码,下载地

    2024年01月19日
    浏览(71)
  • PyTorch入门学习(十一):神经网络-线性层及其他层介绍

    目录 一、简介 二、PyTorch 中的线性层 三、示例:使用线性层构建神经网络 四、常见的其他层 一、简介 神经网络是由多个层组成的,每一层都包含了一组权重和一个激活函数。每层的作用是将输入数据进行变换,从而最终生成输出。线性层是神经网络中的基本层之一,它执

    2024年02月05日
    浏览(41)
  • uniapp h5 echarts 打包后图表点击失效/及其他失效

    pc端 window11 hbuilderx版本 3.8.12 echarts版本 5.4.3 在main.js 加上 window.wx = {} // 开发正常 打包后 图表点击等也会失效 window.wx = null 会报错 打包后自动检测环境,会优先走到 wx里去。进去就不出来了。拉都拉不出来那种。所以重写一下wx

    2024年02月08日
    浏览(42)
  • 搜索引擎的基本原理、算法、用户画像及其他相关知识点

    作者:禅与计算机程序设计艺术 作为一个互联网公司,无疑需要做好搜索引擎的运营。每天都要搜索很多信息,如何做好搜索引擎的用户体验,提高用户的转化率是每家公司的核心竞争力。但实际上,做好搜索引擎运营也不是一件容易的事情,因为搜索引擎的特性、相关性算

    2024年02月04日
    浏览(64)
  • Win11自带微软输入法怎么输入π及其他希腊字母

    如果用搜狗等第三方输入法的话就没有这些问题了,各种符号很方便。 自带的输入法输入 pi 和 pai 都不能正常输入 π pi π 参考文章 https://www.cnblogs.com/qq-757617012/p/14078133.html 如果用自带的输入法可以采用以下方式 输入 uuxl xl表示“希腊”,即可看到各种希腊字母,其中即包括

    2024年02月09日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包