【Python】Streamlit库学习:一款好用的Web框架

这篇具有很好参考价值的文章主要介绍了【Python】Streamlit库学习:一款好用的Web框架。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Streamlit简介

✨Streamlit是一个基于tornado框架的快速搭建Web应用的Python库,封装了大量常用组件方法,支持大量数据表、图表等对象的渲染,支持网格化、响应式布局。简单来说,可以让不了解前端的人搭建网页。
相比于同类产品PyWebIO,Streamlit的功能更加全面一些。

官方文档:https://docs.streamlit.io/

安装

安装前注意,python版本需满足:Python 3.7 - Python 3.11

pip install streamlit

安装完之后,终端输入:

streamlit hello

然后访问 http://localhost:8501,可以看到一些示例demo。

下面将通过官方文档中API的顺序来进行学习。

渲染元素:Write and magic

st.write

st.write是常规的渲染数据的手段。

下面来渲染一个hello world

import streamlit as st

st.write('Hello, *World!* :sunglasses:')

输入完成之后,终端启动py文件:

streamlit run main.py

【Python】Streamlit库学习:一款好用的Web框架

下面是个渲染pandas表格数据的实例:

import streamlit as st
import pandas as pd

st.write(pd.DataFrame({
    'first column': [1, 2, 3, 4],
    'second column': [10, 20, 30, 40],
}))

之前终端若无终止,这里可以直接刷新界面查看最新的渲染情况。
Streamlit对于表格型的pandas数据,自动提供了排序和缩放显示的功能。

【Python】Streamlit库学习:一款好用的Web框架

Magic

Streamlit提供了一种魔法(Magic),无需借助st.write就可以显示元素。

该方法默认是开启的,如果需要关闭该方法,可以修改~/.streamlit/config.toml的这个文件内容:

[runner]
magicEnabled = false

值得注意的是,Magic方法只能成功作用于启动的py文件,对于import之类的py文件,魔法会失效。

下面就用魔法来显示和上面一样的表格:

import pandas as pd
df = pd.DataFrame({
    'first column': [1, 2, 3, 4],
    'second column': [10, 20, 30, 40],
})
df  # 👈 Draw the dataframe

这里相当于输入变量名,直接自动调用st.write()方法,这一点有点类似于jupyter。

文本元素:Text elements

这一部分就是讲不同类型的文本元素,直接看示例即可。

markdown

import streamlit as st

st.markdown('Streamlit is **_really_ cool**.')
st.markdown("This text is :red[colored red], and this is **:blue[colored]** and bold.")
st.markdown(":green[$\sqrt{x^2+y^2}=1$] is a Pythagorean identity. :pencil:")

title

import streamlit as st

st.title('This is a title')
st.title('A title with _italics_ :blue[colors] and emojis :sunglasses:')

这里的title不是指H5里面的title来改选项卡名称,仅仅等同于一个h1标签。

header

import streamlit as st

st.header('This is a header')
st.header('A header with _italics_ :blue[colors] and emojis :sunglasses:')

header:比title小一号的字体。

subheader

import streamlit as st

st.subheader('This is a subheader')
st.subheader('A subheader with _italics_ :blue[colors] and emojis :sunglasses:')

caption

import streamlit as st

st.caption('This is a string that explains something above.')
st.caption('A caption with _italics_ :blue[colors] and emojis :sunglasses:')

caption:小号字体

code

import streamlit as st

code = '''def hello():
    print("Hello, Streamlit!")'''
st.code(code, language='python')

text

import streamlit as st

st.text('This is some text.')

text:普通字体

latex

import streamlit as st

st.latex(r'''
    a + ar + a r^2 + a r^3 + \cdots + a r^{n-1} =
    \sum_{k=0}^{n-1} ar^k =
    a \left(\frac{1-r^{n}}{1-r}\right)
    ''')

展示数据:Data display elements

dataframe

import streamlit as st
import pandas as pd
import numpy as np

df = pd.DataFrame(
   np.random.randn(10, 20),
   columns=('col %d' % i for i in range(20)))

st.dataframe(df.style.highlight_max(axis=0))

dataframe就是像excel中那种活动表,包含排序、搜索等功能。

table

import streamlit as st
import pandas as pd
import numpy as np

df = pd.DataFrame(
   np.random.randn(10, 5),
   columns=('col %d' % i for i in range(5)))

st.table(df)

table是不包含特殊功能的普通表。

metric

metric指代的是网格(grid)布局。

import streamlit as st

col1, col2, col3 = st.columns(3)
col1.metric("Temperature", "70 °F", "1.2 °F")
col2.metric("Wind", "9 mph", "-8%")
col3.metric("Humidity", "86%", "4%")

【Python】Streamlit库学习:一款好用的Web框架

json

import streamlit as st

st.json({
    'foo': 'bar',
    'baz': 'boz',
    'stuff': [
        'stuff 1',
        'stuff 2',
        'stuff 3',
        'stuff 5',
    ],
})

图表元素:Chart elements

折线图:line_chart

import streamlit as st
import pandas as pd
import numpy as np

chart_data = pd.DataFrame(
    np.random.randn(20, 3),
    columns=['a', 'b', 'c'])

st.line_chart(chart_data)

【Python】Streamlit库学习:一款好用的Web框架

折线面积图:area_chart

import streamlit as st
import pandas as pd
import numpy as np

chart_data = pd.DataFrame(
    np.random.randn(20, 3),
    columns=['a', 'b', 'c'])

st.area_chart(chart_data)

【Python】Streamlit库学习:一款好用的Web框架

柱状图:bar_chart

import streamlit as st
import pandas as pd
import numpy as np

chart_data = pd.DataFrame(
    np.random.randn(20, 3),
    columns=["a", "b", "c"])

st.bar_chart(chart_data)

【Python】Streamlit库学习:一款好用的Web框架

柱形面积图:pyplot

import streamlit as st
import matplotlib.pyplot as plt
import numpy as np

arr = np.random.normal(1, 1, size=100)
fig, ax = plt.subplots()
ax.hist(arr, bins=20)

st.pyplot(fig)

【Python】Streamlit库学习:一款好用的Web框架

散点图:altair_chart

import streamlit as st
import pandas as pd
import numpy as np
import altair as alt

chart_data = pd.DataFrame(
    np.random.randn(20, 3),
    columns=['a', 'b', 'c'])

c = alt.Chart(chart_data).mark_circle().encode(
    x='a', y='b', size='c', color='c', tooltip=['a', 'b', 'c'])

st.altair_chart(c, use_container_width=True)

【Python】Streamlit库学习:一款好用的Web框架

三维柱状图:pydeck_chart

import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk

chart_data = pd.DataFrame(
   np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
   columns=['lat', 'lon'])

st.pydeck_chart(pdk.Deck(
    map_style=None,
    initial_view_state=pdk.ViewState(
        latitude=37.76,
        longitude=-122.4,
        zoom=11,
        pitch=50,
    ),
    layers=[
        pdk.Layer(
           'HexagonLayer',
           data=chart_data,
           get_position='[lon, lat]',
           radius=200,
           elevation_scale=4,
           elevation_range=[0, 1000],
           pickable=True,
           extruded=True,
        ),
        pdk.Layer(
            'ScatterplotLayer',
            data=chart_data,
            get_position='[lon, lat]',
            get_color='[200, 30, 0, 160]',
            get_radius=200,
        ),
    ],
))

【Python】Streamlit库学习:一款好用的Web框架

二维散点地图:map

import streamlit as st
import pandas as pd
import numpy as np

df = pd.DataFrame(
    np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
    columns=['lat', 'lon'])

st.map(df)

【Python】Streamlit库学习:一款好用的Web框架
这两个图和excel中的三维地图效果很相似。
此外,还有一些组合图、树状图,以及一些绘图参数说明,这里略过。

交互组件:Input widgets

按钮:button

import streamlit as st

if st.button('Say hello'):
    st.write('Why hello there')
else:
    st.write('Goodbye')

表格编辑器:experimental_data_editor

import streamlit as st
import pandas as pd

df = pd.DataFrame(
    [
       {"command": "st.selectbox", "rating": 4, "is_widget": True},
       {"command": "st.balloons", "rating": 5, "is_widget": False},
       {"command": "st.time_input", "rating": 3, "is_widget": True},
   ]
)
edited_df = st.experimental_data_editor(df)

favorite_command = edited_df.loc[edited_df["rating"].idxmax()]["command"]
st.markdown(f"Your favorite command is **{favorite_command}** 🎈")

可以由用户来编辑表格内容
【Python】Streamlit库学习:一款好用的Web框架

下载按钮:download_button

这个是一个特殊按钮,用户点击之后可以下载文件。

下载DataFrame为CSV文件:

import streamlit as st

@st.cache
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode('utf-8')

csv = convert_df(my_large_df)

st.download_button(
    label="Download data as CSV",
    data=csv,
    file_name='large_df.csv',
    mime='text/csv',
)

下载文本为txt文件:

import streamlit as st

text_contents = '''This is some text'''
st.download_button('Download some text', text_contents)

下载二进制文件:

import streamlit as st

binary_contents = b'example content'
# Defaults to 'application/octet-stream'
st.download_button('Download binary file', binary_contents)

下载图片:

import streamlit as st

with open("flower.png", "rb") as file:
    btn = st.download_button(
            label="Download image",
            data=file,
            file_name="flower.png",
            mime="image/png"
          )

勾选框:checkbox

import streamlit as st

agree = st.checkbox('I agree')

if agree:
    st.write('Great!')

单选按钮:radio

import streamlit as st

genre = st.radio(
    "What\'s your favorite movie genre",
    ('Comedy', 'Drama', 'Documentary'))

if genre == 'Comedy':
    st.write('You selected comedy.')
else:
    st.write("You didn\'t select comedy.")

单选框:selectbox

import streamlit as st

option = st.selectbox(
    'How would you like to be contacted?',
    ('Email', 'Home phone', 'Mobile phone'))

st.write('You selected:', option)

【Python】Streamlit库学习:一款好用的Web框架

滑动块:slider

import streamlit as st

age = st.slider('How old are you?', 0, 130, 25)
st.write("I'm ", age, 'years old')

【Python】Streamlit库学习:一款好用的Web框架

输入文本框:text_input

import streamlit as st

title = st.text_input('Movie title', 'Life of Brian')
st.write('The current movie title is', title)

输入数字框:number_input

import streamlit as st

number = st.number_input('Insert a number')
st.write('The current number is ', number)

【Python】Streamlit库学习:一款好用的Web框架

输入日期框:date_input

import datetime
import streamlit as st

d = st.date_input(
    "When\'s your birthday",
    datetime.date(2019, 7, 6))
st.write('Your birthday is:', d)

点击可以唤起日历

文件上传按钮:file_uploader

上传单个文件:

import streamlit as st
import pandas as pd
from io import StringIO

uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
    # To read file as bytes:
    bytes_data = uploaded_file.getvalue()
    st.write(bytes_data)

    # To convert to a string based IO:
    stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
    st.write(stringio)

    # To read file as string:
    string_data = stringio.read()
    st.write(string_data)

    # Can be used wherever a "file-like" object is accepted:
    dataframe = pd.read_csv(uploaded_file)
    st.write(dataframe)

上传多个文件:

import streamlit as st

uploaded_files = st.file_uploader("Choose a CSV file", accept_multiple_files=True)
for uploaded_file in uploaded_files:
    bytes_data = uploaded_file.read()
    st.write("filename:", uploaded_file.name)
    st.write(bytes_data)

此外,还有调用摄像头实时显示的camera_input,选择颜色color_picker,适用场景比较小,这里略过。

媒体元素:Media elements

图片:image

import streamlit as st
from PIL import Image

image = Image.open('sunrise.jpg')

st.image(image, caption='Sunrise by the mountains')

音频:audio

import streamlit as st
import numpy as np

audio_file = open('myaudio.ogg', 'rb')
audio_bytes = audio_file.read()

st.audio(audio_bytes, format='audio/ogg')

sample_rate = 44100  # 44100 samples per second
seconds = 2  # Note duration of 2 seconds
frequency_la = 440  # Our played note will be 440 Hz
# Generate array with seconds*sample_rate steps, ranging between 0 and seconds
t = np.linspace(0, seconds, seconds * sample_rate, False)
# Generate a 440 Hz sine wave
note_la = np.sin(frequency_la * t * 2 * np.pi)

st.audio(note_la, sample_rate=sample_rate)

视频:video

import streamlit as st

video_file = open('myvideo.mp4', 'rb')
video_bytes = video_file.read()

st.video(video_bytes)

布局和容器:Layouts and containers

侧边栏:sidebar

sidebar的以下两种调用方式等效:

# Object notation
st.sidebar.[element_name]

# 等效于
# "with" notation
with st.sidebar:
    st.[element_name]

使用示例:

import streamlit as st

# Using object notation
add_selectbox = st.sidebar.selectbox(
    "How would you like to be contacted?",
    ("Email", "Home phone", "Mobile phone")
)

# Using "with" notation
with st.sidebar:
    add_radio = st.radio(
        "Choose a shipping method",
        ("Standard (5-15 days)", "Express (2-5 days)")
    )

【Python】Streamlit库学习:一款好用的Web框架
它可以将上述各种元素嵌到侧边栏中,侧边栏支持弹出和收缩。

行列布局:columns

示例:

import streamlit as st

col1, col2, col3 = st.columns(3)

with col1:
   st.header("A cat")
   st.image("https://static.streamlit.io/examples/cat.jpg")

with col2:
   st.header("A dog")
   st.image("https://static.streamlit.io/examples/dog.jpg")

with col3:
   st.header("An owl")
   st.image("https://static.streamlit.io/examples/owl.jpg")

【Python】Streamlit库学习:一款好用的Web框架

标签界面:tabs

标签界面有点类似于Android里面的Fragment,相当于做了一个局部的界面切换。

import streamlit as st

tab1, tab2, tab3 = st.tabs(["Cat", "Dog", "Owl"])

with tab1:
   st.header("A cat")
   st.image("https://static.streamlit.io/examples/cat.jpg", width=200)

with tab2:
   st.header("A dog")
   st.image("https://static.streamlit.io/examples/dog.jpg", width=200)

with tab3:
   st.header("An owl")
   st.image("https://static.streamlit.io/examples/owl.jpg", width=200)

【Python】Streamlit库学习:一款好用的Web框架

容器:container

容器的作用在于可以将一些元素组合起来,比如让一些元素一起不可见,此时,隐藏容器即可实现。
容器基本使用:

import streamlit as st

with st.container():
   st.write("This is inside the container")

   # You can call any Streamlit command, including custom components:
   st.bar_chart(np.random.randn(50, 3))

st.write("This is outside the container")

【Python】Streamlit库学习:一款好用的Web框架

状态元素:Status elements

进度条:progress

import streamlit as st
import time

progress_text = "Operation in progress. Please wait."
my_bar = st.progress(0, text=progress_text)

for percent_complete in range(100):
    time.sleep(0.1)
    my_bar.progress(percent_complete + 1, text=progress_text)

【Python】Streamlit库学习:一款好用的Web框架

加载圈:spinner

import time
import streamlit as st

with st.spinner('Wait for it...'):
    time.sleep(5)
st.success('Done!')

【Python】Streamlit库学习:一款好用的Web框架

气球:balloon

挺有意思的一段过场动画,没有特别的实际意义。

import streamlit as st

st.balloons()

【Python】Streamlit库学习:一款好用的Web框架

错误:error

import streamlit as st

st.error('This is an error', icon="🚨")

【Python】Streamlit库学习:一款好用的Web框架

警告:warning

import streamlit as st

st.warning('This is a warning', icon="⚠️")

通知:info

import streamlit as st

st.info('This is a purely informational message', icon="ℹ️")

成功:success

import streamlit as st

st.success('This is a success message!', icon="✅")

异常:exception

import streamlit as st

e = RuntimeError('This is an exception of type RuntimeError')
st.exception(e)

控制流:Control flow

停止运行:stop

代码运行到st.stop的时候停止,类似于debug中的断点。
可以适用于判断用户输入的场景:

import streamlit as st

name = st.text_input('Name')
if not name:
  st.warning('Please input a name.')
  st.stop()
st.success('Thank you for inputting a name.')

这里用户输入不为空时,才执行success。
【Python】Streamlit库学习:一款好用的Web框架

表单:form

这里的表单自带一个提交按钮,其它按钮不能添加到表单内部。

import streamlit as st

with st.form("my_form"):
   st.write("Inside the form")
   slider_val = st.slider("Form slider")
   checkbox_val = st.checkbox("Form checkbox")

   # Every form must have a submit button.
   submitted = st.form_submit_button("Submit")
   if submitted:
       st.write("slider", slider_val, "checkbox", checkbox_val)

st.write("Outside the form")

【Python】Streamlit库学习:一款好用的Web框架

通用组件:Utilities

设置页面基本配置:set_page_config

这里可以设置页面的标题、图标,菜单信息

import streamlit as st

st.set_page_config(
    page_title="Ex-stream-ly Cool App",
    page_icon="🧊",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://www.extremelycoolapp.com/help',
        'Report a bug': "https://www.extremelycoolapp.com/bug",
        'About': "# This is a header. This is an *extremely* cool app!"
    }
)

除了这个比较实用之外,这个模块包含了代码执行模块st.echo、显示函数帮助模块st.help等鸡肋模块,用处不大,暂且不表。

缓存:cache

缓存主要用来解决两个问题:

  • 长时间运行的函数重复运行,这会减慢应用程序。
  • 对象被重复创建,这使得它们很难在重新运行或会话中持久化。

在老版本的Streamlit中,缓存均通过装饰器st.cache来实现。
在新版本中,缓存分成了两个装饰器st.cache_datast.cache_resource

缓存数据:cache_data

cache_data适合返回DataFrames、NumPy 数组、str、int、float或者其他可序列化类型的函数。

比如,这里有个函数需要下载数据集:

@st.cache_data
def load_data(url):
    df = pd.read_csv(url)  # 👈 Download the data
    return df

df = load_data("https://github.com/plotly/datasets/raw/master/uber-rides-data1.csv")
st.dataframe(df)

st.button("Rerun")

没有加@st.cache_data之前,每次运行都需要联网下载数据集,添加之后,只需要第一次运行去下载,之后,会将数据集序列化之后,存到缓存中,后续运行则可以直接读取缓存。

缓存资源:cache_resource

缓存资源通常作用于缓存数据库连接和 ML 模型这类全局可用的资源。

当函数的返回值不需要是可序列化的,比如数据库连接、文件句柄或线程,此时无法用cache_data,只能用cache_resource。

示例,缓存数据库连接:

@st.cache_resource
def init_connection():
    host = "hh-pgsql-public.ebi.ac.uk"
    database = "pfmegrnargs"
    user = "reader"
    password = "NWDMCE5xdipIjRrp"
    return psycopg2.connect(host=host, database=database, user=user, password=password)

conn = init_connection()

接口-内嵌Html

Streamlit预留了st.components.v1.html这个接口,可以解析html数据。
比如,可以通过这个接口,来内嵌b站视频iframe。

import streamlit.components.v1 as components

components.html(
    """
    <iframe src="//player.bilibili.com/player.html?aid=993781570&bvid=BV1fx4y1P7RA&cid=1061322233&page=1" scrolling="no" border="0" frameborder="no" framespacing="0" allowfullscreen="true"> </iframe>
    """,
    height=600,
)

总结

Streamlit就像是Markdown,不能指望它完全替代前端,来为生产项目提供服务。但是很大程度上简化了网页编辑操作,让构建一个简单网页的成本大大降低。文章来源地址https://www.toymoban.com/news/detail-427975.html

到了这里,关于【Python】Streamlit库学习:一款好用的Web框架的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 手机上好用的python编辑器,手机能用的python编辑器

    大家好,本文将围绕手机软件编辑器中文版python展开说明,手机上好用的python编辑器是一个很多人都想弄明白的事情,想搞清楚手机能用的python编辑器需要先了解以下几个事情。 前言 现在越来越多人学习python,很多小伙伴都富有激情的,利用碎片化的时间都要学习,小编不

    2024年01月16日
    浏览(54)
  • 基于streamlit的Python Web可视化展示模板

    全国大学数据集  数据集 工作台 - Heywhale.com 工作台 - Heywhale.com   可视化界面      主函数 streamlit 启动  打开python文件对应的文件夹目录   使用streamlit run 对应的py文件  登录界面streamlit实现,这里streamlit框架是一直不断刷新,所以要用外部的控制刷新,或者跳转来解决 选

    2024年01月21日
    浏览(42)
  • python库streamlit学习笔记

    Streamlit是一个免费的开源框架,用于快速构建和共享漂亮的机器学习和数据科学Web应用程序。它是一个基于Python的库,专为机器学习工程师设计。数据科学家或机器学习工程师不是网络开发人员,他们对花几周时间学习使用这些框架来构建网络应用程序不感兴趣。相反,他们

    2024年02月01日
    浏览(37)
  • Yunfly 一款高效、性能优异的node.js企业级web框架

    Yunfly 一款高性能 Node.js WEB 框架, 使用 Typescript 构建我们的应用。 使用 Koa2 做为 HTTP 底层框架, 使用 routing-controllers 、 typedi 来高效构建我们的 Node 应用。 Yunfly 在 Koa 框架之上提升了一个抽象级别, 但仍然支持 Koa 中间件。在此基础之上, 提供了一套强大的插件系统, 给开发者提

    2024年02月15日
    浏览(61)
  • Python学习笔记_进阶篇(一)_浅析tornado web框架

    1、tornado概述 Tornado就是我们在 FriendFeed 的 Web 服务器及其常用工具的开源版本。Tornado 和现在的主流 Web 服务器框架(包括大多数 Python 的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。得利于其 非阻塞的方式和对epoll的运用,Tornado 每秒可以处理数以千计的

    2024年02月12日
    浏览(40)
  • web自动化框架:selenium学习使用操作大全(Python版)

    Selenium需要浏览器驱动程序才能与所选浏览器交互。例如,Firefox需要安装geckodriver。确保它在PATH中。 主流浏览器驱动下载地址如下: 浏览器 驱动名称 打开方式及注意事项 地址 Chrome chromedriver driver = webdriver.Chrome() 下载浏览器对应版本的chromedriver.exe 一定要创建对象,不然打

    2024年02月11日
    浏览(42)
  • Python 潮流周刊#18:Flask、Streamlit、Polars 的学习教程

    你好,我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容,大部分为英文。标题取自其中三则分享,不代表全部内容都是该主题,特此声明。 本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频

    2024年02月10日
    浏览(40)
  • 基于Python实现的一款轻量、强大、好用的视频处理软件,可缩视频、转码视频、倒放视频、合并片段、根据字幕裁切片段、自动配字幕等

    Quick Cut 是一款轻量、强大、好用的视频处理软件。它是一个轻量的工具,而不是像 Davinci Resolve、Adobe Premiere 那样专业的、复杂的庞然大物。Quick Cut 可以满足普通人一般的视频处理需求:压缩视频、转码视频、倒放视频、合并片段、根据字幕裁切片段、自动配字幕、自动剪辑

    2024年01月24日
    浏览(48)
  • 怎么样才能正确的选择一款机房用的温湿度传感器呢?

    ​  目前市场上出现了多种以太网温湿度传感器,也可称为IP温湿度传感器,鱼龙混杂,良莠不齐,好像有了RJ45网络接口是以太网温湿度传感器,单看宣传页技术指标参数,好像都差不多,给工程师带来选择上的困惑,到底该选择哪种类型的传感器呢??笔者根据实际测试,

    2024年02月05日
    浏览(57)
  • 一款非常好用的语音转文字工具介绍

    最近发现一款非常好用的语音转文字的工具Whisper,支持将视频和语音转换成文字,同时记录语音的位置信息,支持语言的翻译,可以将英文转换成中文。同时支持实时的语音自动采集录制。 下面是下载的地址: 【免费】视频、语音转文字Windows版资源-CSDN文库 大家下载好文件

    2024年02月02日
    浏览(102)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包