有限域运算(附源码分析)

这篇具有很好参考价值的文章主要介绍了有限域运算(附源码分析)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、有限域

本文对有关代数学概念仅做简要阐述,更详细介绍请参看相关书籍。文章来源地址https://www.toymoban.com/news/detail-427994.html

有限域

  • 群(Group):集合G与运算 ∘ \circ 满足封闭率、结合律、单位元律、可逆律等性质,即可被称之为群 ( G , ∘ ) (G,\circ) (<

到了这里,关于有限域运算(附源码分析)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 高等数学:线性代数-第三章

    矩阵的初等变换 下面三种变换称为矩阵的初等变换 对换两行(列),记作 r i ↔ r j ( c i ↔ c j ) r_{i} leftrightarrow r_{j} (c_{i} leftrightarrow c_{j}) r i ​ ↔ r j ​ ( c i ​ ↔ c j ​ ) 以数 k ≠ 0 k ne 0 k  = 0 乘某一行(列)中的所有元,记作 r i × k ( c i × k ) r_{i} times k ( c_{i}

    2024年02月11日
    浏览(46)
  • 线性代数 | 机器学习数学基础

    前言 线性代数 (linear algebra)是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 本文主要介绍 机器学习 中所用到的线性代数 核心基础概念 ,供读者学习阶段查漏补缺或是 快速学习参考 。 线性代数

    2024年01月21日
    浏览(69)
  • 《离散数学》:代数系统和图论导论

    代数系统是数学中的一个重要概念,它涉及一组对象以及定义在这些对象上的运算规则。代数系统可以是抽象的,也可以是具体的。 在抽象代数中,代数系统通常由一组元素和一组操作(或称为运算)组成。这些操作可以是二元的(例如加法和乘法)或一元的(例如取负)。

    2024年02月10日
    浏览(39)
  • 数学与计算机(2)- 线性代数

    原文:https://blog.iyatt.com/?p=13044 NumPy 中 array 和 matrix 都可以用于储存矩阵,后者是前者的子类,array 可以表示任意维度,matrix 只能是二维,相当于矩阵专用,在一些矩阵的运算操作上较为直观。 1.1.1 自定义矩阵 NumPy 通过元组货列表创建的矩阵类型都相同 1.1.2 随机元素矩阵

    2024年03月23日
    浏览(52)
  • d3d12龙书阅读----数学基础 向量代数、矩阵代数、变换

    d3d12龙书阅读----数学基础 向量代数、矩阵代数、变换 directx 采用左手坐标系 点积与叉积 点积与叉积的正交化 使用点积进行正交化 使用叉积进行正交化 矩阵与矩阵乘法 转置矩阵 单位矩阵 逆矩阵 矩阵行列式 变换 旋转矩阵 坐标变换 利用DirectXMath库进行向量运算、矩阵运算以

    2024年02月19日
    浏览(49)
  • 深度学习-必备的数学知识-线性代数6

    线性代数 通过伪逆求解线性方程组 伪逆,又称为Moore-Penrose逆,它是一种广义的矩阵。我们可以找到任意一个矩阵的伪逆。矩阵 A mathbf{A} A 的伪逆定义为: A + = lim ⁡ x → 0 ( A T A + α I ) − 1 A T mathbf{A}^+=lim_{x to 0}(mathbf{A}^Tmathbf{A}+alphamathbf{I})^{-1}mathbf{A}^T A + = x → 0 lim ​

    2024年01月18日
    浏览(59)
  • 深度学习-必备的数学知识-线性代数(合集)

    为方便大家阅读,这里推出一个线性代数的合集。这与之前的内容是一致的。 我们在深度学习-简介和 深度学习-历史背景中已经初步了解的深度学习。在我们开始学习深度学习前还需要做些准备工作。就是学习应用数学和机器学习基础。 想要理解深度学习这些是必不可少的

    2024年02月03日
    浏览(58)
  • 深度学习-必备的数学知识-线性代数-1

    我们在深度学习-简介和 深度学习-历史背景中已经初步了解的深度学习。在我们真正开始学习深度学习前还需要做些准备工作。那就是学习应用数学和机器学习基础。想要理解深度学习这些是必不可少的。 我将在这篇文章中为大家介绍一部分与深度学习有关的线性代数。 我

    2024年02月05日
    浏览(51)
  • 深度学习-必备的数学知识-线性代数5

    线性代数 在数学中,分解通常指的是将一个复杂的对象或结构分解为更简单的部件或组件。这个概念在许多数学领域都有应用。在线性代数中,矩阵分解是常见的一个主题,我们通过分解矩阵来发现它不明显的性质。 矩阵有许多种的分解方式:LU分解、QR分解、特征分解、奇

    2024年02月02日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包