行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

这篇具有很好参考价值的文章主要介绍了行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

目录

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

1. 前言

2. 行人检测(人体检测)检测模型(YOLOv5)

(1)行人检测(人体检测)模型训练

(2)将Pytorch模型转换ONNX模型

(3)将ONNX模型转换为TNN模型

3. 行人检测(人体检测)C++端上部署

(1)项目结构

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

4. 行人检测(人体检测)效果C++版本

5. 行人检测(人体检测)效果Android版本

6. 项目源码下载


1. 前言

这是项目《行人检测(人体检测)》系列之《C++实现行人检测/人体检测(含源码,可实时行人检测)》;本篇主要分享将Python训练后的YOLOv5的行人检测(人体检测)模型转写成C/C++代码。我们将开发一个简易的、可实时运行的行人检测(人体检测)C/C++ Demo。行人检测(人体检测)C/C ++版本模型推理支持CPU和GPU加速,在GPU(OpenCL)加速下,可以达到实时的检测效果,基本满足业务的性能需求。

先展示一下行人检测(人体检测)的效果:

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/128954638


更多项目《行人检测(人体检测)》系列文章请参考:

  1. 行人检测(人体检测)1:人体检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/128821763
  2. 行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588
  3. 行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615
  4. 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954638

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

​ 如果需要进行人像分割,实现一键抠图效果,请参考文章:《一键抠图Portrait Matting人像抠图 (C++和Android源码)》

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测) 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测) 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

2. 行人检测(人体检测)检测模型(YOLOv5)

(1)行人检测(人体检测)模型训练

行人检测(人体检测)训练过程,请参考:行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588

为了能部署在开发板或者手机平台上,本人对YOLOv5s进行了简单的模型轻量化,并开发了一个轻量级的版本yolov5s05_416和yolov5s05_320模型;轻量化模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。下表格给出yolov5s模型,轻量化模型yolov5s05_416和yolov5s05_320的计算量和参数量以及其检测精度

模型 input-size params(M) GFLOPs

mAP_0.5

mAP_0.5:0.95
yolov5s 640×640 7.2 16.5 0.98432 0.73693
yolov5s05 416×416 1.7 1.8 0.97004 0.50567
yolov5s05 320×320 1.7 1.1 0.96448 0.44821

(2)将Pytorch模型转换ONNX模型

训练好yolov5s模型后,你需要先将Pytorch模型转换为ONNX模型,并使用onnx-simplifier简化网络结构,Python版本的已经提供了ONNX转换脚本,终端输入命令如下:

# 转换yolov5s05模型
python export.py --weights "data/model/yolov5s05_320/weights/best.pt" --img-size 320 320

# 转换yolov5s模型
python export.py --weights "data/model/yolov5s_640/weights/best.pt" --img-size 640 640

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(3)将ONNX模型转换为TNN模型

目前在C++端上,CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

转换成功后,会生成两个文件(*.tnnproto和*.tnnmodel) ,下载下来后面会用到


3. 行人检测(人体检测)C++端上部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib_AI吃大瓜的博客-CSDN博客_opencv opencv_contrib ubuntu

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL_xiaozl_284的博客-CSDN博客_clinfo源码下载

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通电脑设备即可达到实时处理。

如果你想在这个 C++ Demo部署你自己训练的行人检测(人体检测)模型,你可以将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)

add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")

if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
    # -DCMAKE_BUILD_TYPE=Debug
    # -DCMAKE_BUILD_TYPE=Release
    message(STATUS "No build type selected, default to Release")
    set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()

# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")

# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")


# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    #set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DTNN_ARM_ENABLE)              # for Android CPU
    add_definitions(-DDEBUG_ANDROID_ON)            # for Android Log
    add_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")


# Detector
include_directories(src)
set(SRC_LIST
        src/yolov5.cpp
        src/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")

#add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)


(5)main源码

主程序src/main_for_yolov5.cpp中提供行人检测的Demo:

//
// Created by Pan on 2018/6/24.
//

#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "yolov5.h"

using namespace dl;
using namespace vision;
using namespace std;


void test_yolov5_detector() {
    const int num_thread = 1;
    DeviceType device = GPU; // 使用GPU运行,需要配置好OpenCL
    //DeviceType device = CPU; // 使用CPU运行

    // 测试YOLOv5s_640
    string proto_file = "../data/tnn/yolov5/yolov5s_640.sim.tnnproto";
    string model_file = "../data/tnn/yolov5/yolov5s_640.sim.tnnmodel";
    YOLOv5Param model_param = YOLOv5s_640;//模型参数

    // 测试YOLOv5s05_416
    //string proto_file = "../data/tnn/yolov5/yolov5s05_416.sim.tnnproto";
    //string model_file = "../data/tnn/yolov5/yolov5s05_416.sim.tnnmodel";
    //YOLOv5Param model_param = YOLOv5s05_416;//模型参数

    // 测试YOLOv5s05_320
    //string proto_file = "../data/tnn/yolov5/yolov5s05_320.sim.tnnproto";
    //string model_file = "../data/tnn/yolov5/yolov5s05_320.sim.tnnmodel";
    //YOLOv5Param model_param = YOLOv5s05_320;//模型参数

    // 设置检测阈值
    const float scoreThresh = 0.3;
    const float iouThresh = 0.5;
    YOLOv5 *detector = new YOLOv5(model_file,
                                  proto_file,
                                  model_param,
                                  num_thread,
                                  device);

    // 测试图片
    string image_dir = "../data/test_image";
    vector<string> image_list = get_files_list(image_dir);
    for (string image_path:image_list) {
        cv::Mat bgr_image = cv::imread(image_path);
        if (bgr_image.empty()) continue;
        FrameInfo resultInfo;
        printf("init frame\n");
        // 开始检测
        detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);
        // 可视化代码
        detector->visualizeResult(bgr_image, &resultInfo);
    }
    delete detector;
    detector = nullptr;
    printf("FINISHED.\n");

}

int main() {
    test_yolov5_detector();
    return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];then
  mkdir "build"
else
  echo "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./demo

  • 如果你要测试CPU运行的性能,请修改src/main_for_yolov5.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main_for_yolov5.cpp (需配置好OpenCL) 

DeviceType device = GPU; //默认使用GPU

下面截图给出开启OpenCL加速的性能对比截图,纯C++推理模式需要耗时几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。

CPU 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)
GPU 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

4. 行人检测(人体检测)效果C++版本

下图给出C++版本行人检测(人体检测)效果:

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测) 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)
行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测) 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

 下图GIF这是Python版本的行人检测(人体检测)效果,C++版本与Python版本的结果几乎是一致

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)


5. 行人检测(人体检测)效果Android版本

已经完成Android版本人体检测算法开发,APP在普通Android手机上可以达到实时的检测和识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。详细说明请查看:行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615

人体检测Android Demo体验:https://download.csdn.net/download/guyuealian/87441942

    行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)     行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)


6. 项目源码下载

【行人检测(人体检测)C/C++源码下载】行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

整套项目源码内容包含:

  1. 项目提供YOLOv5行人检测(人体检测)模型:包含yolov5s模型,轻量化模型yolov5s05_416和yolov5s05_320三个行人检测(人体检测)模型;在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右;包含高精度版本yolov5s行人检测(人体检测)模型,CPU(4线程)约250ms左右,GPU约100ms左右
  2. 项目C++源码支持CPU和GPU运行,GPU模型加速需要配置好OpenCL,否则速度很慢
  3. 项目源码不含Python训练代码和Android源码;

如果你想体验一下行人检测(人体检测)效果,可下载Android版本进行测试,Android和C++版本的行人检测(人体检测)核心算法是一样的

  1.  行人检测(人体检测)Python训练,请参考:行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588

  2. 行人检测(人体检测)Android部署,请参考: 行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615文章来源地址https://www.toymoban.com/news/detail-428012.html

到了这里,关于行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之四 简单行人人体检测效果

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单人脸检测/识别实战案例 之四 简单行人人体检测效果 一、简单介绍 二、简单行人人体检测效果实现原理 三、简单行人人体检测效果案例实现简单步骤 四、注意事项 Python是一种跨平台的计算机程序设计语言。是一种面向对

    2024年04月26日
    浏览(58)
  • YOLOv5姿态估计:HRnet实时检测人体关键点

    前言: Hello大家好,我是Dream。 今天来学习一下 利用YOLOv5进行姿态估计,HRnet与SimDR检测图片、视频以及摄像头中的人体关键点 ,欢迎大家一起前来探讨学习~ 首先需要我们利用Pycharm直接克隆github中的姿态估计原工程文件,如果不知道怎样在本地克隆Pycharm,可以接着往下看,

    2024年01月17日
    浏览(65)
  • Mediapipe人体骨架检测和实时3d绘制——Mediapipe实时姿态估计

    大约两年前,基于自己的理解我曾写了几篇关于Mediapipe的文章,似乎帮助到了一些人。这两年,忙于比赛、实习、毕业、工作和考研。上篇文章已经是一年多前发的了。这段时间收到很多私信和评论,请原谅无法一一回复了。我将尝试在这篇文章里回答一些大家经常问到的问

    2024年02月03日
    浏览(53)
  • 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)

    目录 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测) 1. 前言 2. 跌倒检测数据集说明 3. 基于YOLOv5的跌倒检测模型训练 4.跌倒检测模型Android部署 (1) 将Pytorch模型转换ONNX模型 (2) 将ONNX模型转换为TNN模型 (3) Android端上部署模型 (4) 一些异常错误解决方法

    2024年02月01日
    浏览(41)
  • YOLOPose:除了目标检测,YOLO还能不花代价地估计人体姿态,对实时性能有要求必看!

    导读: YOLO,是一种流行的目标检测框架。如果将YOLO引入姿态检测任务中,将取得什么结果呢?这篇文章实现了单阶段的2D人体姿态检测,与自上而下或自下而上的方法不同,该方法将人体检测与关键点估计联合实现,在不采用数据增强如翻转、多尺度等情况下,实现COCO ke

    2024年02月06日
    浏览(39)
  • 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)

    目录 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测) 1.疲劳驾驶检测和识别方法 2.人脸检测方法 3.疲劳驾驶检测和识别模型训练 4.疲劳驾驶检测和识别模型Android部署 (1) 将Pytorch模型转换ONNX模型 (2) 将ONNX模型转换为TNN模型 (3) Android端上部署

    2024年02月16日
    浏览(70)
  • 【opencv】传统目标检测:HOG+SVM实现行人检测

    传统目标分类器主要包括Viola Jones Detector、HOG Detector、DPM Detector,本文主要介绍HOG Detector与SVM分类器的组合实现行人检测。 HOG(Histograms of Oriented Gradients:定向梯度直方图)是一种基于图像梯度的特征提取方法,被广泛应用于计算机视觉和机器学习领域。由Navneet Dalal和Bill T

    2024年02月12日
    浏览(41)
  • (附源码)Springboot人体健康检测微信小程序 毕业设计012142

    Springboot人体健康检测微信小程序的设计与实现 摘 要 本文设计了一种基于微信小程序的人体健康检测小程序,主要为人们提供了方便的各项健康检测服务,包括健康数据编辑、健康科普、健康讨论、注册登录功能等,用户能够方便快捷地查看健康科普知识、进行健康数据信息

    2024年02月09日
    浏览(49)
  • HOG+SVM行人检测python实现

      HOG算法是在2005年由法国Dalal提出。HOG特征作为机器学习目标检测效果最好的特征,在其基础上发展来的DPM算法更是可以成为机器学习在目标检测领域的巅峰之作,连续三年横扫PASCAL VOC。HOG是一种在计算机视觉和图像处理中用来进行物体检测的描述子。通过计算和统计局部

    2023年04月20日
    浏览(37)
  • 【机器学习】HOG+SVM实现行人检测

    任务:利用INRIA Person数据集,提取HOG特征并采用SVM方法实现图像中的行人检测。 本文将给出详细的操作步骤,以及可能会出现的坑点。 INRIA数据集含有直立或行走的人的图像,被Navneet Dalal用于训练发表在CVPR 2005的人类检测器。 坑点1 :官网http://pascal.inrialpes.fr/data/human/打开后

    2024年02月02日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包