FasterNet实战:使用FasterNet实现图像分类任务(二)

这篇具有很好参考价值的文章主要介绍了FasterNet实战:使用FasterNet实现图像分类任务(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


在上一篇文章中完成了前期的准备工作,见链接:
FasterNet实战:使用FasterNet实现图像分类任务(一)
这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.fasternet import fasternet_s
from torch.autograd import Variable
from torchvision import datasets
# torch.backends.cudnn.benchmark = False
import warnings
warnings.filterwarnings("ignore")

os.environ['CUDA_VISIBLE_DEVICES']="0,1"

os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机器上有8块显卡,我们打算使用前两块显卡训练,设置为“0,1”,同理如果打算使用第三块和第六块显卡训练,则设置为“2,5”。

设置随机因子

def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

设置了固定的随机因子,再次训练的时候就可以保证图片的加载顺序不会发生变化。

设置全局参数


if __name__ == '__main__':
    #创建保存模型的文件夹
    file_dir = 'checkpoints/fasternet/'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir,exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    model_lr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 300
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    use_amp = True  # 是否使用混合精度
    use_dp = True #是否开启dp方式的多卡训练
    classes = 12
    resume =None
    CLIP_GRAD = 5.0
    Best_ACC = 0 #记录最高得分
    use_ema=True
    model_ema_decay=0.9998
    start_epoch=1
    seed=1
    seed_everything(seed)

设置存放权重文件的文件夹,如果文件夹存在删除再建立。

接下来,设置全局参数,比如:学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。
注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

 file_dir = 'checkpoints/fasternet'

这是存放fasternet模型的路径。

图像预处理与增强

   # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std= [0.18507297, 0.18050247, 0.16784933])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std= [0.18507297, 0.18050247, 0.16784933])
    ])
    mixup_fn = Mixup(
        mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
        prob=0.1, switch_prob=0.5, mode='batch',
        label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

这里注意下Resize的大小,由于选用的PoolFormer模型输入是224×224的大小,所以要Resize为224×224。

读取数据

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, pin_memory=True,shuffle=True,drop_last=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, pin_memory=True,shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代。pin_memory设置为True,可以加快运行速度。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

  # 实例化模型并且移动到GPU
    criterion_train = SoftTargetCrossEntropy()
    criterion_val = torch.nn.CrossEntropyLoss()

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

 	#设置模型
    model_ft = fasternet_s(pretrained=True)
    num_fr=model_ft.head.in_features
    model_ft.head=nn.Linear(num_fr,classes)
    if resume:
        model=torch.load(resume)
        print(model['state_dict'].keys())
        model_ft.load_state_dict(model['state_dict'])
        Best_ACC=model['Best_ACC']
        start_epoch=model['epoch']+1
    model_ft.to(DEVICE)
  • 设置模型为fasternet_s,pretrained设置为true,表示加载预训练模型,修改head层,将将输出classes设置为12。
  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch.

设置优化器和学习率调整算法

   # 选择简单暴力的Adam优化器,学习率调低
   optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)
   cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()
    if torch.cuda.device_count() > 1 and use_dp:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model_ft = torch.nn.DataParallel(model_ft)
    if use_ema:
        model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device=DEVICE,
            resume=resume)
    else:
        model_ema=None
  • use_amp为True,则开启混合精度训练,声明pytorch自带的混合精度 torch.cuda.amp.GradScaler()。
  • 检测可用显卡的数量,如果大于1,并且开启多卡训练的情况下,则要用torch.nn.DataParallel加载模型,开启多卡训练。
  • 如果使用ema,则注册ema
    注:torch.nn.DataParallel方式,默认不能开启混合精度训练的,如果想要开启混合精度训练,则需要在模型的forward前面加上@autocast()函数。
    FasterNet实战:使用FasterNet实现图像分类任务(二)

如果不开启混合精度则要将@autocast()去掉,否则loss一直试nan。

定义训练和验证函数

训练函数

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch,model_ema):
    model.train()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), Variable(target).to(device,                                                                                 non_blocking=True)
        samples, targets = mixup_fn(data, target)
        output = model(samples)
        optimizer.zero_grad()
        if use_amp:
            with torch.cuda.amp.autocast():
                loss = torch.nan_to_num(criterion_train(output, targets))
            scaler.scale(loss).backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            # Unscales gradients and calls
            # or skips optimizer.step()
            scaler.step(optimizer)
            # Updates the scale for next iteration
            scaler.update()
        else:
            loss = criterion_train(output, targets)
            loss.backward()
            # torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
            optimizer.step()

        if model_ema is not None:
            model_ema.update(model)
        torch.cuda.synchronize()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        loss_meter.update(loss.item(), target.size(0))
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))
    ave_loss =loss_meter.avg
    acc = acc1_meter.avg
    print('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))
    return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    loss_meter = AverageMeter()
    acc1_meter = AverageMeter()
    acc5_meter = AverageMeter()
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    val_list = []
    pred_list = []
    for data, target in test_loader:
        for t in target:
            val_list.append(t.data.item())
        data, target = data.to(device,non_blocking=True), target.to(device,non_blocking=True)
        output = model(data)
        loss = criterion_val(output, target)
        _, pred = torch.max(output.data, 1)
        for p in pred:
            pred_list.append(p.data.item())
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        loss_meter.update(loss.item(), target.size(0))
        acc1_meter.update(acc1.item(), target.size(0))
        acc5_meter.update(acc5.item(), target.size(0))
    acc = acc1_meter.avg
    print('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(
        loss_meter.avg,  acc,  acc5_meter.avg))
    if acc > Best_ACC:
        if isinstance(model, torch.nn.DataParallel):
            torch.save(model.module, file_dir + '/' + 'best.pth')
        else:
            torch.save(model, file_dir + '/' + 'best.pth')
        Best_ACC = acc
    if isinstance(model, torch.nn.DataParallel):
        state = {
            'epoch': epoch,
            'state_dict': model.module.state_dict(),
            'Best_ACC':Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.module.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    else:
        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'Best_ACC': Best_ACC
        }
        if use_ema:
            state['state_dict_ema']=model.state_dict()
        torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
    return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证
    is_set_lr = False
    log_dir = {}
    train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []
    if resume and os.path.isfile(file_dir+"result.json"):
        with open(file_dir+'result.json', 'r', encoding='utf-8') as file:
            logs = json.load(file)
            train_acc_list = logs['train_acc']
            train_loss_list = logs['train_loss']
            val_acc_list = logs['val_acc']
            val_loss_list = logs['val_loss']
            epoch_list = logs['epoch_list']
    for epoch in range(start_epoch, EPOCHS + 1):
        epoch_list.append(epoch)
        log_dir['epoch_list'] = epoch_list
        train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)
        train_loss_list.append(train_loss)
        train_acc_list.append(train_acc)
        log_dir['train_acc'] = train_acc_list
        log_dir['train_loss'] = train_loss_list
        if use_ema:
            val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)
        else:
            val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)
        val_loss_list.append(val_loss)
        val_acc_list.append(val_acc)
        log_dir['val_acc'] = val_acc_list
        log_dir['val_loss'] = val_loss_list
        log_dir['best_acc'] = Best_ACC
        with open(file_dir + '/result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(log_dir))
        print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))
        if epoch < 600:
            cosine_schedule.step()
        else:
            if not is_set_lr:
                for param_group in optimizer.param_groups:
                    param_group["lr"] = 1e-6
                    is_set_lr = True
        fig = plt.figure(1)
        plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')
        # 显示图例
        plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')
        plt.legend(["Train Loss", "Val Loss"], loc="upper right")
        plt.xlabel(u'epoch')
        plt.ylabel(u'loss')
        plt.title('Model Loss ')
        plt.savefig(file_dir + "/loss.png")
        plt.close(1)
        fig2 = plt.figure(2)
        plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')
        plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')
        plt.legend(["Train Acc", "Val Acc"], loc="lower right")
        plt.title("Model Acc")
        plt.ylabel("acc")
        plt.xlabel("epoch")
        plt.savefig(file_dir + "/acc.png")
        plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:
FasterNet实战:使用FasterNet实现图像分类任务(二)

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

FasterNet测试结果:

FasterNet实战:使用FasterNet实现图像分类任务(二)

FasterNet实战:使用FasterNet实现图像分类任务(二)

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

FasterNet_demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.51819474, 0.5250407, 0.4945761], std=[0.24228974, 0.24347611, 0.2530049])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/fasternet/best.pth',map_location='cpu')
model.eval()
model.to(DEVICE)

path = 'test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 加载model,并将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

FasterNet实战:使用FasterNet实现图像分类任务(二)

热力图可视化展示

新建脚本cam_image.py,插入如下代码:

import argparse
import os
import cv2
import numpy as np
import torch
from pytorch_grad_cam import GradCAM, \
    ScoreCAM, \
    GradCAMPlusPlus, \
    AblationCAM, \
    XGradCAM, \
    EigenCAM, \
    EigenGradCAM, \
    LayerCAM, \
    FullGrad
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import show_cam_on_image, \
    deprocess_image, \
    preprocess_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

import timm
from torch.autograd import Variable


def reshape_transform_resmlp(tensor, height=14, width=14):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_swin(tensor, height=7, width=7):
    result = tensor.reshape(tensor.size(0),
                            height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def reshape_transform_vit(tensor, height=14, width=14):
    result = tensor[:, 1:, :].reshape(tensor.size(0),
                                      height, width, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--use-cuda', action='store_true', default=False,
                        help='Use NVIDIA GPU acceleration')
    parser.add_argument(
        '--image-path',
        type=str,
        default="./test/0bf7bfb05.png",
        help='Input image path')
    parser.add_argument(
        '--output-image-path',
        type=str,
        default=None,
        help='Output image path')
    parser.add_argument(
        '--model',
        type=str,
        default='fasternet',
        help='model name')
    parser.add_argument('--aug_smooth', action='store_true',
                        help='Apply test time augmentation to smooth the CAM')
    parser.add_argument(
        '--eigen_smooth',
        action='store_true',
        help='Reduce noise by taking the first principle componenet'
             'of cam_weights*activations')
    parser.add_argument('--method', type=str, default='gradcam++',
                        choices=['gradcam', 'gradcam++',
                                 'scorecam', 'xgradcam',
                                 'ablationcam', 'eigencam',
                                 'eigengradcam', 'layercam', 'fullgrad'],
                        help='Can be gradcam/gradcam++/scorecam/xgradcam'
                             '/ablationcam/eigencam/eigengradcam/layercam')

    args = parser.parse_args()
    args.use_cuda = args.use_cuda and torch.cuda.is_available()
    if args.use_cuda:
        print('Using GPU for acceleration')
    else:
        print('Using CPU for computation')

    return args


if __name__ == '__main__':
    args = get_args()
    methods = \
        {"gradcam": GradCAM,
         "scorecam": ScoreCAM,
         "gradcam++": GradCAMPlusPlus,
         "ablationcam": AblationCAM,
         "xgradcam": XGradCAM,
         "eigencam": EigenCAM,
         "eigengradcam": EigenGradCAM,
         "layercam": LayerCAM,
         "fullgrad": FullGrad}

    DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = torch.load('checkpoints/ConvNext/best.pth', map_location='cpu')
    reshape_transform = None
    if 'poolformer' in args.model:
        target_layers = [model.network[-1]]  # [model.network[-1][-2]]
        print(target_layers)
    elif 'resnet' in args.model:
        target_layers = [model.layer4[-1]]
    elif 'fasternet' in args.model:
        target_layers = [model.stages[-1]]
    elif 'resmlp' in args.model:
        target_layers = [model.blocks[-1]]
        reshape_transform = reshape_transform_resmlp
    elif 'deit' in args.model:
        target_layers = [model.blocks[-1].norm1]
        reshape_transform = reshape_transform_vit
    elif 'swin' in args.model:
        target_layers = [model.layers[-1].blocks[-1]]
        reshape_transform = reshape_transform_swin
    print(target_layers)
    model.eval()
    model.to(DEVICE)
    img_path = args.image_path
    if args.image_path:
        img_path = args.image_path
    else:
        import requests

        image_url = 'http://146.48.86.29/edge-mac/imgs/n02123045/ILSVRC2012_val_00023779.JPEG'
        img_path = image_url.split('/')[-1]
        if os.path.exists(img_path):
            img_data = requests.get(image_url).content
            with open(img_path, 'wb') as handler:
                handler.write(img_data)

    if args.output_image_path:
        save_name = args.output_image_path
    else:
        img_type = img_path.split('.')[-1]
        it_len = len(img_type)
        save_name = img_path.split('/')[-1][:-(it_len + 1)]
        save_name = save_name + '_' + args.model + '.' + img_type

    img = cv2.imread(img_path, 1)
    img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
    if args.model == 'resize':
        cv2.imwrite(save_name, img)
    else:
        rgb_img = img[:, :, ::-1]
        rgb_img = np.float32(rgb_img) / 255
        input_tensor = Variable(preprocess_image(rgb_img,
                                                 mean=[0.485, 0.456, 0.406],
                                                 std=[0.229, 0.224, 0.225]), requires_grad=True).to(DEVICE)
        targets = None
        cam_algorithm = methods[args.method]
        with cam_algorithm(model=model,
                           target_layers=target_layers,
                           use_cuda=args.use_cuda,
                           reshape_transform=reshape_transform,
                           ) as cam:

            cam.batch_size = 1
            grayscale_cam = cam(input_tensor=input_tensor,
                                targets=targets,
                                aug_smooth=args.aug_smooth,
                                eigen_smooth=args.eigen_smooth)

            grayscale_cam = grayscale_cam[0, :]
            cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
            cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
        cv2.imwrite(save_name, cam_image)

对get_args函数的参数进行设置:

  • use-cuda:是否使用cuda,如果在没有GPU的电脑上调试时,将其设置为False。
  • image-path:待测图片的路径,这个是必填项。
  • model:必填项,默认值:convnext。

效果如下图所示:

FasterNet实战:使用FasterNet实现图像分类任务(二)FasterNet实战:使用FasterNet实现图像分类任务(二)FasterNet实战:使用FasterNet实现图像分类任务(二)

一个无法解决的错误

在多卡训练的时候出现一个错误,错误如下:

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:0! (when checking argument for argument weight in method wrapper__cudnn_convolution)

报错的位置在:
FasterNet实战:使用FasterNet实现图像分类任务(二)

这个我还不知道如何解决,DP方式的多卡训练才会出现这个问题。
暂时只能不使用多卡,将use_dp设置为False。

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87611421文章来源地址https://www.toymoban.com/news/detail-428143.html

到了这里,关于FasterNet实战:使用FasterNet实现图像分类任务(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ConvNeXt V2实战:使用ConvNeXt V2实现图像分类任务(一)

    论文:https://arxiv.org/pdf/2301.00808.pdf 论文翻译:https://wanghao.blog.csdn.net/article/details/128541957 官方源码: https://github.com/facebookresearch/ConvNeXt-V2 当前的主干网络几乎是Transformers的时代,ConvNeXt为数不多的的高性能CNN网络,V1版本就证明了其强大的存在,在V2版本中,作者提出了一个全

    2024年02月02日
    浏览(40)
  • VanillaNet实战:使用VanillaNet实现图像分类(二)

    在上一篇文章中完成了前期的准备工作,见链接: VanillaNet实战:使用VanillaNet实现图像分类(一) 这篇主要是讲解如何训练和测试 完成上面的步骤后,就开始train脚本的编写,新建train.py 在train.py导入 os.environ[‘CUDA_VISIBLE_DEVICES’]=“0,1” 选择显卡,index从0开始,比如一台机

    2024年02月11日
    浏览(47)
  • Python深度学习实战-基于class类搭建BP神经网络实现分类任务(附源码和实现效果)

    实现功能 上篇文章介绍了用Squential搭建BP神经网络,Squential可以搭建出上层输出就是下层输入的顺序神经网络结构,无法搭出一些带有跳连的非顺序网络结构,这个时候我们可以选择类class搭建封装神经网络结构。 第一步:import tensorflow as tf:导入模块 第二步:制定输入网络

    2024年02月08日
    浏览(58)
  • Python深度学习实战-基于tensorflow原生代码搭建BP神经网络实现分类任务(附源码和实现效果)

            前面两篇文章分别介绍了两种搭建神经网络模型的方法,一种是基于tensorflow的keras框架,另一种是继承父类自定义class类,本篇文章将编写原生代码搭建BP神经网络。 本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘

    2024年02月08日
    浏览(50)
  • 项目实战解析:基于深度学习搭建卷积神经网络模型算法,实现图像识别分类

    随着人工智能的不断发展,深度学习这门技术也越来越重要,很多人都开启了学习机器学习,本文将通过项目开发实例,带领大家从零开始设计实现一款基于深度学习的图像识别算法。 学习本章内容, 你需要掌握以下基础知识: Python 基础语法 计算机视觉库(OpenCV) 深度学习

    2024年02月03日
    浏览(61)
  • 基于PyTorch使用LSTM实现新闻文本分类任务

    PyTorch深度学习项目实战100例 https://weibaohang.blog.csdn.net/article/details/127154284?spm=1001.2014.3001.5501 基于PyTorch使用LSTM实现新闻文本分类任务的概况如下: 任务描述:新闻文本分类是一种常见的自然语言处理任务,旨在将新闻文章分为不同的类别,如政治、体育、科技等。 方法:使

    2024年02月09日
    浏览(42)
  • (一)图像分类任务介绍 Image Classification

    目录 一、什么是图像分类任务?它有哪些应用场景? 二、图像分类任务的难点? 三、基于规则的方法是否可行? 四、什么是数据驱动的图像分类范式? 数据集构建 分类器设计与学习 分类器决策 五、常用的分类任务评价指标是什么?          图像分类任务是计算机视

    2024年02月11日
    浏览(41)
  • 分类任务使用Pytorch实现Grad-CAM绘制热力图

    对于深度学习网络,在我们指定数据集类别的情况下,Grad-CAM能够绘制出相应的热力图,让我们能够非常直观的看出网络关注的主要区域与特征是什么。本文主要记录在绘制热力图过程中,自己碰到的一些实际问题,希望能对小伙伴们有所帮助。 以下是本文的参考视频和代码

    2024年02月04日
    浏览(48)
  • 关于图像分类任务中划分数据集,并且生成分类类别的josn字典文件

    在做图像分类任务的时候, 数据格式是文件夹格式,相同文件夹下存放同一类型的类别 不少网上的数据,没有划分数据集,虽然代码简单,每次重新编写还是颇为麻烦,这里记录一下 如下,有的数据集这样摆放: 可以看出这是个三分类任务,不过没有划分测试集、验证集

    2024年02月02日
    浏览(38)
  • 使用Pytorch实现图像花朵分类

    代码的介绍在这个链接里面,这篇博客主要是为了带着大家通过实践的方式熟悉一下代码的使用,并且了解相关功能。 这里我提供了一个花朵数据集,里面总共有十个类别的花朵作为本次实验的数据集。 我们下载代码和数据集到本地,然后我们在下图创建一个名字为dataset的

    2023年04月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包