【Python VTK】读取二维序列医学图像分割结果并进行三维重建

这篇具有很好参考价值的文章主要介绍了【Python VTK】读取二维序列医学图像分割结果并进行三维重建。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、问题描述

最近在开发过程中遇到了这样的问题:

在医学图像开发过程中,我们将医学图像通过深度学习算法进行分割,现在想要通过这一套二维图像进行三维重构

以下是分割结果:

【Python VTK】读取二维序列医学图像分割结果并进行三维重建

图一:前列腺核磁图像分割结果 图一:前列腺核磁图像分割结果 图一:前列腺核磁图像分割结果

以下是读取的遮罩mask:

【Python VTK】读取二维序列医学图像分割结果并进行三维重建

图二:图像分割遮罩 图二:图像分割遮罩 图二:图像分割遮罩
如何将这些二维图像进行三维重建,是个棘手问题,笔者通过vtk进行建模操作。

二、解决方案

0. 写在前面

医学图像的三维重建本身就是热点技术,这项技术也并非新鲜技术,笔者调研多份前者的博客与其余资料,整理出了自己的解决方案,旨在与大家共同交流,如果您有更好的建模方案,欢迎随时与我交流!

1. 准备工作

进行医学图像的三维重建,首先需要提供清晰可见的轮廓与遮罩。(如图二所示)

所用到的库:

  • vtk,您可以通过 pip install vtk 直接安装

2. 文件结构

  • mask文件夹 (用于存放分割结果遮罩,图片名为 mask_0.png, mask_1.png , mask_2.png 等20张图片)
  • vtk_gaussian.py (python脚本,用于执行并进行三维重建)

如图所示:

【Python VTK】读取二维序列医学图像分割结果并进行三维重建

图三:项目采用的文件结构 图三:项目采用的文件结构 图三:项目采用的文件结构

3. 代码讲解

3.0 完整代码

我知道有的朋友比较急,这里先给出完整代码:

import vtk

# 定义渲染窗口、交互模式
aRender = vtk.vtkRenderer()
Renwin = vtk.vtkRenderWindow()
Renwin.AddRenderer(aRender)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(Renwin)

# 定义个图片读取接口
# 读取PNG图片就换成PNG_Reader = vtk.vtkPNGReader()
PNG_Reader = vtk.vtkPNGReader()
PNG_Reader.SetNumberOfScalarComponents(1)
PNG_Reader.SetFileDimensionality(2)  # 说明图像是三维的

# 定义图像大小,本行表示图像大小为(512*512*240)
PNG_Reader.SetDataExtent(0, 256, 0, 256, 0, 19)
# 设置图像的存放位置
name_prefix = ['mask/mask_']
PNG_Reader.SetFilePrefix(name_prefix[0])

# 设置图像前缀名字
# 表示图像前缀为数字(如:0.jpg)
PNG_Reader.SetFilePattern("%s%d.png")
PNG_Reader.Update()
PNG_Reader.SetDataByteOrderToLittleEndian()
spacing = [1.0, 1.0, 2.5]  # x, y 方向上的间距为 2 像素,z 方向上的间距为 2.5 像素
PNG_Reader.GetOutput().SetSpacing(spacing)

# 高斯平滑
gauss = vtk.vtkImageGaussianSmooth()
gauss.SetInputConnection(PNG_Reader.GetOutputPort())
gauss.SetStandardDeviations(1.0, 1.0, 1.0)
gauss.SetRadiusFactors(1.0, 1.0, 1.0)
gauss.Update()

# 计算轮廓的方法
contour = vtk.vtkMarchingCubes()
gauss.GetOutput().SetSpacing(spacing)
contour.SetInputConnection(gauss.GetOutputPort())
contour.ComputeNormalsOn()
contour.SetValue(0, 100)

mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(contour.GetOutputPort())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

renderer = vtk.vtkRenderer()
renderer.SetBackground([1.0, 1.0, 1.0])
renderer.AddActor(actor)

window = vtk.vtkRenderWindow()
window.SetSize(512, 512)
window.AddRenderer(renderer)

interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(window)

# 开始显示
if __name__ == '__main__':
    window.Render()
    interactor.Initialize()
    interactor.Start()

3.1 定义渲染窗口、交互模式

import vtk

# 定义渲染窗口、交互模式
aRender = vtk.vtkRenderer()
Renwin = vtk.vtkRenderWindow()
Renwin.AddRenderer(aRender)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(Renwin)

本人的所有三维重建脚本中几乎都包含这一块内容,同时这也是进行vtk交互窗口初始化的部分,更多信息您可以查阅vtk官方文档或者其他技术博客。

3.2 读取二维图像序列 - 定义读取接口

要将mask_0.pngmask_19.png的图像全部读取,需要先定义个图片读取接口 (vtk.vtkXxxReader)。

笔者的图像为.png格式,因此使用vtk.vtkPNGReader() 进行图像读取。

PNG_Reader = vtk.vtkPNGReader()
PNG_Reader.SetNumberOfScalarComponents(1)
PNG_Reader.SetFileDimensionality(2)  # 说明图像是二维的

在这里,可以根据不同的图片格式选取不同的vtkReader,如果是 .jpg 格式的图像,可以有如下更改:

JPG_Reader = vtk.vtkJPEGReader()
# your code here...

3.3 读取二维图像序列 - 前置设置 & 图像读取

# 定义图像大小,本人表示图像大小为(256*256)
# 后两个参数是图片的数目,本人这里所用的图像共20张,所以就输入0, 19
# 在后续读取的时候,会根据这个序列进行读取
PNG_Reader.SetDataExtent(0, 256, 0, 256, 0, 19)
# 设置图像的存放位置
name_prefix = ['mask/mask_']
PNG_Reader.SetFilePrefix(name_prefix[0])

# 表示图像前缀为数字(如:0.jpg)
PNG_Reader.SetFilePattern("%s%d.png")
PNG_Reader.Update()
PNG_Reader.SetDataByteOrderToLittleEndian()

这段代码是进行图像读取的一些前置设置。SetDataExtent()函数的参数设置会对后续图像的处理会有一定影响,请正确填写您所使用的图片的大小和数目!

SetFilePrefix() 函数会根据传入的字符串进行锁定。在这里一定要特别注意

  • 本人的图像存放在mask文件夹下,每张图片的名字为:mask_0.png, mask_1.png
  • 在这里设置Prefix时,就要输入 mask/mask_
  • 后面的SetFilePattern() 函数会自动读取数字,因为前缀已经设置好,不需要再在此处进行一些正则运算符操作

3.4 图像数据量少,三维建模的结果很扁平

解决方案:您可以增大图像之间的间距来解决这个问题,紧接着上面的代码:

PNG_Reader.SetDataByteOrderToLittleEndian()
spacing = [1.0, 1.0, 2.5]  # x, y 方向上的间距为 2 像素,z 方向上的间距为 2.5 像素
PNG_Reader.GetOutput().SetSpacing(spacing)

在读取好图片之后,可以设置图像之间的 spacing 这个列表,分别代表x, y, z 三个维度的间距,其中我将z维度的间距增大为2.5, 这样的操作在后面的建模中有显著效果。具体内容如下:

【Python VTK】读取二维序列医学图像分割结果并进行三维重建【Python VTK】读取二维序列医学图像分割结果并进行三维重建

图四:两种不同间距的建模结果,左图为 z = 1.0 ,右图为 z = 2.5 图四:两种不同间距的建模结果,左图为z=1.0,右图为z=2.5 图四:两种不同间距的建模结果,左图为z=1.0,右图为z=2.5

为了使建模结果更接近与器官的形状,我建议设置好二维图像之间的间距

3.5 三维重建结果的平滑—高斯平滑

原本建模的结果“层次分明”,并不是特别美观。笔者采用高斯平滑的方案对图像进行平滑。

如果您有更好的平滑方案,欢迎您与我交流!

# 高斯平滑
gauss = vtk.vtkImageGaussianSmooth()
gauss.SetInputConnection(PNG_Reader.GetOutputPort())
gauss.SetStandardDeviations(1.0, 1.0, 1.0)
gauss.SetRadiusFactors(1.0, 1.0, 1.0)
gauss.Update()
【Python VTK】读取二维序列医学图像分割结果并进行三维重建【Python VTK】读取二维序列医学图像分割结果并进行三维重建

图五:两种不同间距的平滑结果,左图为未平滑,右图为使用高斯平滑 图五:两种不同间距的平滑结果,左图为未平滑,右图为使用高斯平滑 图五:两种不同间距的平滑结果,左图为未平滑,右图为使用高斯平滑

3.6 计算轮廓与边缘提取

在进行高斯平滑之后,进行边缘提取。

# 计算轮廓的方法
contour = vtk.vtkMarchingCubes()
gauss.GetOutput().SetSpacing(spacing)
contour.SetInputConnection(gauss.GetOutputPort())
contour.ComputeNormalsOn()
contour.SetValue(0, 100)

3.7 管道操作与可视化展示

后面这段代码是vtk的显示部分,笔者一般不去动它,也是每一份脚本中的固有内容,如果您对该部分感兴趣,您应该查阅vtk官方文档。

mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(contour.GetOutputPort())
mapper.ScalarVisibilityOff()

actor = vtk.vtkActor()
actor.SetMapper(mapper)

renderer = vtk.vtkRenderer()
renderer.SetBackground([1.0, 1.0, 1.0])
renderer.AddActor(actor)

window = vtk.vtkRenderWindow()
window.SetSize(512, 512)
window.AddRenderer(renderer)

interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(window)

# 开始显示
if __name__ == '__main__':
    window.Render()
    interactor.Initialize()
    interactor.Start()

三、一些vtk库的使用经验分享

1. python vtk

个人感觉python vtk的开发并没有pythonic风格,开发者有一些将cpp的开发思路带入python库/接口的设计,让我写起来味如嚼蜡,从上面的代码亦可以看出,具有浓厚的cpp风格。

不过代码能跑就行,不得不说vtk仍然是很强大的三维重建工具!

2. 数据传入的两种方式

2.1 .GetOutputPort().SetInputConnection()

您会看见诸如 contour.SetInputConnection(gauss.GetOutputPort()) 的句子。

这两个函数一般是成对出现,上下传递的。

2.1 .GetOutput().SetInputData()

笔者在参阅其他博主的博客时,同样看见这样的写法,例如:

contour.SetInputData(gauss.GetOutput())

这两个函数一般是成对出现的,进行上下传递处理结果。

3. vtkImageData 和 vtkPolyData

在开发过程中,您可能会遇到不少报错,其中肯定会有vtk数据类型报错的问题。我整理了一份表格:

Name Input Type Return Type Variable
vtk.vtkPNGReader() ? vtkImageData PNG_Reader
vtk.vtkImageGaussianSmooth() vtkImageData vtkImageData gauss
vtk.vtkMarchingCubes() vtkImageData vtkPolyData contour
vtk.vtkPolyDataNormals() vtkImageData vtkPolyData normfilter

希望能够帮助您解决开发过程中的一些疑惑。

后记

医学图像的三维重建工作部分博客较少,笔者希望提供一些星星之火,大家共同进步!

笔者采用的重建代码已经打包至百度云盘,您可以通过下面的链接下载:

下载链接

提取码:jpt3文章来源地址https://www.toymoban.com/news/detail-428536.html

到了这里,关于【Python VTK】读取二维序列医学图像分割结果并进行三维重建的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • UNet深度学习模型在医学图像分割中的应用及其Python实现细节

    第一部分:引言和UNet架构简介 引言 : 医学图像分割是医疗图像处理的重要领域,它涉及将图像划分为多个区域,以标识和隔离感兴趣的区域(如器官、肿瘤等)。近年来,随着深度学习技术的发展,多种神经网络模型被应用于这一领域。其中,UNet模型因其出色的表现而受

    2024年02月12日
    浏览(27)
  • 【医学图像】图像分割系列.2 (diffusion)

    介绍几篇使用diffusion来实现医学图像分割的论文:DARL(ICLR2023),MedSegDiff(MIDL2023) MedSegDiff-V2(arXiv2023),ImgX-DiffSeg(arXiv2023) 基础概念: 一文弄懂 Diffusion Model (qq.com)。 表示学习(representation learning)初印象 - 知乎 (zhihu.com)。 10分钟快速入门PyTorch (10) - 知乎 (zhihu.com)。 解读

    2024年02月07日
    浏览(28)
  • 医学图像分割

    方法 内容 监督学习 骨干网络的选择、网络块的设计、损失函数的改进 弱监督学习 数据增强、迁移学习、交互式分割研究 医学图像分割的难点: 医学图像的特征提取,因为医学影像中存在模糊、噪声、对比度低等问题。–CNN 医学图像通常含有噪声且边界模糊。–U-Net 目标

    2024年02月04日
    浏览(28)
  • 医学图像分割之MedNeXt

    论文: MedNeXt: Transformer-driven Scaling of ConvNets for Medical Image Segmentation ConvNeXt 网络是一种借鉴 Transformer 的思想进行了改进实现的全卷积网络,其通过全卷积网络和逆向残差瓶颈单元的设计,可以实现比较大的空间感受野。本文在此基础上提出了新的可伸缩,标准化的网络结构

    2023年04月08日
    浏览(42)
  • 深度学习实验-3d医学图像分割

    实验四 基于nnU-Net模型的3D医学图像分割实验 腹部多器官分割一直是医学图像分析领域最活跃的研究领域之一,其作为一项基础技术,在支持疾病诊断,治疗规划等计算机辅助技术发挥着重要作用。近年来,基于深度学习的方法在该领域中获得了巨大成功。本实验数据集为多

    2024年02月07日
    浏览(40)
  • 通用医学图像分割模型UniverSeg

    虽然深度学习模型已经成为医学图像分割的主要方法,但它们通常无法推广到涉及新解剖结构、图像模态或标签的unseen分割任务。给定一个新的分割任务,研究人员通常必须训练或微调模型,这很耗时,并对临床研究人员构成了巨大障碍,因为他们往往缺乏训练神经网络的资

    2024年02月04日
    浏览(36)
  • 医学图像分割常用的评价指标

        在医学图像分割的论文中,常常看到Dice、VOE、RVD、MSD等指标,但是具体这些指标是什么意思呢,我们进行相应的简单说明。 V s e g text V_{s e g} V s e g ​ :代表预测的分割结果 V g t text V_{g t} V g t ​ :代表ground truth的分割结果     Dice 系数是一种评估相似度的函

    2024年02月08日
    浏览(24)
  • 医学图像的图像处理、分割、分类和定位-1

            本报告全面探讨了应用于医学图像的图像处理和分类技术。开展了四项不同的任务来展示这些方法的多功能性和有效性。任务 1 涉及读取、写入和显示 PNG、JPG 和 DICOM 图像。任务 2 涉及基于定向变化的多类图像分类。此外,我们在任务 3 中包括了胸部 X 光图像的性

    2024年01月19日
    浏览(70)
  • 医学图像分割的全卷积transformer

    我们提出了一种新的Transformer ,能够分割不同模式的医学图像。医学图像分析的细粒度特性所带来的挑战意味着Transformer 对其分析的适应仍处于初级阶段。UNet的巨大成功在于它能够理解分割任务的细粒度性质,这是现有的基于变压器的模型目前所不具备的能力。为了解决这个

    2024年02月12日
    浏览(29)
  • CVPR 2023 医学图像分割论文大盘点

    点击下方 卡片 ,关注“ CVer ”公众号 AI/CV重磅干货,第一时间送达 点击进入— 【医学图像分割】微信交流群 被催了很久,CVer 正式开启 CVPR 2023 论文大盘点系列 ! Amusi 一共搜集了13篇医学图像分割论文 ,这应该是目前各平台上 最新最全面的CVPR 2023 医学图像分割盘点资料

    2024年02月14日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包