时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测

这篇具有很好参考价值的文章主要介绍了时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测

预测效果

时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测
时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测
时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测

基本介绍

MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测
基于鲸鱼算法优化长短期记忆网络(WOA-LSTM)的时间序列预测。
优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。
评价指标包括:MAE、MSE、RMSE等,代码质量极高,方便学习和替换数据。

程序设计

  • 完整程序和数据下载方式1(资源处直接下载):MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测
  • 完整程序和数据下载方式2(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏收录的所有内容,数据订阅后私信我获取):MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测
  • 完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序6份,数据订阅后私信我获取):MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测
% 预设鲸鱼优化算法的参数 
popsize = 5; %种群数量
maxgen = 20;  % WOA最大的迭代次数
dim = 3; % 优化的自变量个数 ,依次为LSTM的第一和第二隐含层节点数,最大训练代数,初始学习率

   %输入输出数据
    L = size(output, 1); %样本总数
    %     testNumber = round(L*0.2); %设置四个样本测试
    testNumber =20; %设置四个样本测试
    trainNumber = L - testNumber; %训练样本数量
 
    % 划分训练集和测试集
    p_train = input(1:trainNumber, :)';
    t_train = output(1:trainNumber, :)';
    % 测试集 
    p_test = input(trainNumber+1:trainNumber+testNumber,:)';
    t_test = output(trainNumber+1:trainNumber+testNumber,:)';
        %% 归一化和元胞数组处理
    [pn_train ,ps]= mapminmax(p_train);
    [tn_train, ts] = mapminmax(t_train);
    %测试集的归一化
    pn_test = mapminmax('apply', p_test, ps);
    tn_test = mapminmax('apply', t_test, ts);

     for i = 1:length(t_train)
        P_train{i,1} =  pn_train(:,i);
    end
    for i = 1:length(t_test)
        P_test{i,1} =  pn_test(:,i);
    end

    %% 归一化和元胞数组处理p 4; % 优化的自变量个数 ,依次为LSTM的第一和第二隐含层节点数,最大训练代数,初始学习率
    lb = [1, 1, 0.001]; % 下限
    ub = [10,20, 0.01]; % 上限

    % initialize position vector and score for the leader,初始化位置向量和领导者得分
    Leader_pos=zeros(1,dim);
    Leader_score=inf; %change this to -inf for maximization problems,将此更改为-inf以获得最大化问题,Inf无穷大


    %Initialize the positions of search agents
    Positions=initialization(popsize,dim,ub,lb);%Positions,存放数个个体的多维位置。

    Convergence_curve=zeros(1,maxgen);%Convergence_curve收敛曲线

    t=1;% Loop counter

    % Main loop
    while t<maxgen+1   % 首先  迭代次数的while循环   为2  也就是鲸鱼群体会进化2disp(['current iteration is: ', num2str(t)])
        

        for i=1:size(Positions,1)%对每个个体一个一个检查是否越界  % 种群规模是2  所以嵌套了2次训练

            % Return back the search agents that go beyond the boundaries of
            % the search space,返回超出搜索空间边界的搜索代理
            Flag4ub=Positions(i,:)>ub;
            Flag4lb=Positions(i,:)<lb;
            Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;%超过最大值的设置成最大值,超过最小值的设置成最小值


            % 评估个体适应度,会调用func.m子函数,把个体位置坐标赋给LSTM参数中,执行的训练
            % Calculate objective function for each search agent,目标函数值的计算
            [fitness,net]=func(Positions(i,:),p_train,P_train,P_test, tn_train,ts,t_train,t_test);
            if fitness<Leader_score % Change this to > for maximization problem
                Leader_score=fitness; % Update alpha
                Leader_pos=Positions(i,:);
                net1 = net;
            end

        end
        a=2-t*((2)/maxgen); % a decreases linearly fron 2 to 0 in Eq. (2.3)
        % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12),有疑问?
        a2=-1+t*((-1)/maxgen);

        % Update the Position of search agents,参数更新
        for i=1:size(Positions,1)
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]

            A=2*a*r1-a;  % Eq. (2.3) in the paper 
            C=2*r2;      % Eq. (2.4) in the paper

            b=1;               %  parameters in Eq. (2.5)
            l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)

            p = rand();        % p in Eq. (2.6)
            for j=1:size(Positions,2)%对每一个个体地多维度进行循环运算

                if p<0.5%收缩包围机制
                    if abs(A)>=1
                        rand_leader_index = floor(popsize*rand()+1);%floor将 X 的每个元素四舍五入到小于或等于该元素的最接近整数
                        X_rand = Positions(rand_leader_index, :);
                        D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                        Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)

                    elseif abs(A)<1
                        D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)
                        Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)
                    end

                elseif p>=0.5%螺旋更新位置

                    distance2Leader=abs(Leader_pos(j)-Positions(i,j));
                    % Eq. (2.5)
                    Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

                end

            end
        end

        Convergence_curve(t)=Leader_score;
        t=t+1;
        disp(t)
    end

    figure;
    plot(Convergence_curve,'b-','LineWidth',1.0)
    grid on
    xlabel('进化代数')
    ylabel('最佳适应度')
    title('WOA优化过程曲线')

    disp('WOA优化LSTM的结果:')
    disp(strcat('最优参数: ', num2str([round(Leader_pos(1:2)),Leader_pos(3)])))
    disp(strcat('最佳适应度: ', num2str(Leader_score)))

    %% 将WOA优化后的参数赋给LSTM神经网络 while循环结束之后  优化完的最佳参数付给LSTM 再次训练
    % 参数设置
    numFeatures = size(p_train, 1);   %输入层节点
    numHiddenUnits1 = round(Leader_pos(1));  % 第一隐含层节点
    numResponses = 1; %全连接层节点(等于标签的数量)

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502文章来源地址https://www.toymoban.com/news/detail-428822.html

到了这里,关于时序预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包