驱动开发:通过MDL映射实现多次通信

这篇具有很好参考价值的文章主要介绍了驱动开发:通过MDL映射实现多次通信。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在前几篇文章中LyShark通过多种方式实现了驱动程序与应用层之间的通信,这其中就包括了通过运用SystemBuf缓冲区通信,运用ReadFile读写通信,运用PIPE管道通信,以及运用ASYNC反向通信,这些通信方式在应对一收一发模式的时候效率极高,但往往我们需要实现一次性吐出多种数据,例如ARK工具中当我们枚举内核模块时,往往应用层例程中可以返回几条甚至是几十条结果,如下案例所示,这对于开发一款ARK反内核工具是必须要有的功能。

驱动开发:通过MDL映射实现多次通信

  • 那么如何实现如上述功能呢?

其实,实现这类功能可以从两个方面入手,但不论使用哪一种方式本质上都是预留一段缓冲区以此来给内核与应用层共享的区域,该区域内可用于交换数据,实现方式有两种要么在应用层分配空间,要么在内核中分配,LyShark先带大家在内核层实现,通过巧妙地运用MDL映射机制来实现通信需求。

  • MDL是什么呢?

MDL内存读写是最常用的一种读写模式,是用于描述物理地址页面的一个结构,简单的官方解释;内存描述符列表 (MDL) 是一个系统定义的结构,通过一系列物理地址描述缓冲区。执行直接I/O的驱动程序从I/O管理器接收一个MDL的指针,并通过MDL读写数据。一些驱动程序在执行直接I/O来满足设备I/O控制请求时也使用MDL。

通过运用MDL的方式对同一块物理内存同时映射到R0和R3,这样我们只需要使用DeviceIoControl向驱动发送一个指针,通过对指针进行读写就可以实现数据的交换,本人在网络上找到了如下两段被转载的烂大街的片段,这两段代码明显是存在缺陷的如果你也在寻找映射方法那么不要被这两段代码坑了,多数人也根本没有能力将其变为可用的,也就只能转载,不知道哪个大哥挖的坑。

用户态进程分配空间,内核态去映射。

// assume uva is a virtual address in user space, uva_size is its size
MDL * mdl = IoAllocateMdl(uva, uva_size, FALSE, FALSE, NULL);
ASSERT(mdl);
__try {
	MmProbeAndLockPages(mdl, UserMode, IoReadAccess);
} __except(EXCEPTION_EXECUTE_HANDLER) {
	DbgPrint("error code = %d", GetExceptionCode);
}
PVOID kva = MmGetSystemAddressForMdlSafe(mdl, NormalPagePriority);
// use kva 
// …
 
MmUnlockPages(mdl);
IoFreeMdl(mdl);

内核态分配空间,用户态进程去映射。

PVOID kva = ExAllocatePoolWithTag(NonPagedPool, 1024, (ULONG)'PMET');
MDL * mdl = IoAllocateMdl(uva, uva_size, FALSE, FALSE, NULL);
ASSERT(mdl);
__try {
	MmBuildMdlForNonPagedPool(mdl);
} __except(EXCEPTION_EXECUTE_HANDLER) {
	DbgPrint("error code = %d", GetExceptionCode);
}
 
PVOID uva = MmMapLockedPagesSpecifyCache(mdl, UserMode, MmCached, NULL, FALSE, NormalPagePriority); 

如上的代码看看就好摘出来只是要提醒大家这个是无法使用的,如下将进入本篇文章的正题。

以内核中开辟空间为例,首先在代码中要做的就是定义一段非分页内存#define FILE_DEVICE_EXTENSION 4096这段区域用于给全局变量使用,其次我们需要传输结构体那么结构体中的成员就要事先定义好,例如此处使用StructAll来定义结构结构体成员变量如下所示,通过使用static将结构体定义为静态,预先空出1024的内存空间并初始化为0,当然了这种方式是存在弊端的,例如最大只支持1024个结构如果超过了则可能会溢出,当然最好的办法是用户空间开辟,在下次章节中再介绍。

// -------------------------------------------------
// MDL数据传递变量
// -------------------------------------------------

// 保存一段非分页内存,用于给全局变量使用
#define FILE_DEVICE_EXTENSION 4096

// 定义重复结构(循环传递)
typedef struct
{
  char username[256];
  char password[256];
  int count;
}StructAll;

static StructAll ptr[1024] = { 0 };

为了能够达到输出结构体的效果这里我定义一个ShowProcess用于模拟当前系统内进程数,并自动填充为特定的数据,此处结构体内部count成员则用于标注当前共有多少个结构体,用于在用户层读取判断,当然了这种方式的另一个弊端就是浪费空间,因为每一个结构体中都存在一个被填充为0的整数类型。但如果只是实现功能的话其实也不是那么重要。

// 模拟进程列表赋值测试
int ShowProcess(int process_count)
{
  memset(ptr, 0, sizeof(StructAll) * process_count);
  int x = 0;

  for (; x < process_count + 1; x++)
  {
    strcpy_s(ptr[x].username, 256, "lyshark");
    strcpy_s(ptr[x].password, 256, "123456");
  }

  // 设置总共有多少个结构体,并返回结构体个数
  ptr[0].count = x;
  return x;
}

内核态映射: 当定义好如上这些方法时,接下来就是最重要的驱动映射部分了,如下代码所示,首先当用户调用派遣时第一个执行的函数是ShowProcess()它用于获取到当前系统中有多少个进程,接着通过sizeof(MyData) * count计算出当前MyData需要分配的内存池大小并返回给pool_size,调用ExAllocatePool分配一块非分页内核空间,创建IoAllocateMdlMDL映射,将数据MmMapLockedPagesSpecifyCache映射到用户空间,最后将指针pShareMM_User返回给用户态。

  • ShowProcess(715) 获取当前进程数,并返回数量
  • sizeof(MyData) * count 计算得到结构体长度
  • ExAllocatePool(NonPagedPool, pool_size) 分配非分页内存,长度是pool_size
  • IoAllocateMdl() 分配MDL空间,并放入内核态
  • MmMapLockedPagesSpecifyCache() 将内核态指针映射到用户态
  • RtlCopyMemory(pShareMM_SYS, &ptr, sizeof(ptr[0]) * count) 将总进程数放入到count计数变量内
  • *(PVOID *)pIrp->AssociatedIrp.SystemBuffer = pShareMM_User 直接将指针传递给用户态
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

// 获取到当前列表数据
int count = ShowProcess(715);
long pool_size = sizeof(MyData) * count;

DbgPrint("总进程数: %d  分配内存池大小: %d \n", count, pool_size);

__try
{
  // 分配内核空间
  PVOID pShareMM_SYS = ExAllocatePool(NonPagedPool, pool_size);
  RtlZeroMemory(pShareMM_SYS, pool_size);

  // 创建MDL
  PMDL pShareMM_MDL = IoAllocateMdl(pShareMM_SYS, pool_size, FALSE, FALSE, NULL);
  MmBuildMdlForNonPagedPool(pShareMM_MDL);

  // 将内核空间映射到用户空间
  PVOID pShareMM_User = MmMapLockedPagesSpecifyCache(pShareMM_MDL, UserMode, MmCached, NULL, FALSE, NormalPagePriority);

  // 拷贝发送数据
  RtlCopyMemory(pShareMM_SYS, &ptr, sizeof(ptr[0]) * count);

  DbgPrint("[lyshark] 用户地址空间: 0x%x \n", pShareMM_User);
  DbgPrint("[lyshark] 内核地址空间: 0x%p \n", pShareMM_SYS);

  // 将字符串指针发送给应用层
  *(PVOID *)pIrp->AssociatedIrp.SystemBuffer = pShareMM_User;

  // ExFreePool(pShareMM_SYS);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
  break;
}
status = STATUS_SUCCESS;
break;

用户态读取数据: 与内核层一致,用户层同样需要定义StructAll结构体用于接收内核中返回过来的结构,而重要的代码则是接收部分,通过IoControl发送控制码,并得到ptr内存指针,此处区域就是内核态分配过的指针,用户只需要通过循环的方式依次读出里面的数据即可。

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

// -------------------------------------------------
// MDL数据传递变量
// -------------------------------------------------
// 定义重复结构(循环传递)
typedef struct
{
  char username[256];
  char password[256];
  int count;
}StructAll;

// 直接输出循环结构体
StructAll *ptr;

// 派遣命令
DriveControl.IoControl(IOCTL_IO_MDLStructAll, 0, 0, &ptr, sizeof(PVOID), 0);

printf("共享内存地址: %x \n", ptr);

long size = ptr[0].count;

std::cout << "得到结构体总数: " << size << std::endl;

for (int x = 0; x < size; x++)
{
  std::cout << "计数器: " << x << std::endl;
  std::cout << "用户名: " << ptr[x].username << std::endl;
  std::cout << "密码: " << ptr[x].password << std::endl;
  std::cout << std::endl;
}

如上就是内核层与应用层的部分代码功能分析,接下来我将完整代码分享出来,大家可以自行测试效果。

驱动程序WinDDK.sys完整代码;

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#define _CRT_SECURE_NO_WARNINGS
#include <ntifs.h>
#include <windef.h>

// 定义符号链接,一般来说修改为驱动的名字即可
#define DEVICE_NAME        L"\\Device\\WinDDK"
#define LINK_NAME          L"\\DosDevices\\WinDDK"
#define LINK_GLOBAL_NAME   L"\\DosDevices\\Global\\WinDDK"

// 定义驱动功能号和名字,提供接口给应用程序调用
#define IOCTL_IO_MDLStructAll   CTL_CODE(FILE_DEVICE_UNKNOWN, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)

// 保存一段非分页内存,用于给全局变量使用
#define FILE_DEVICE_EXTENSION 4096

// 定义传递结构体
typedef struct
{
	int uuid;
	char szUname[1024];
}MyData;

// -------------------------------------------------
// MDL数据传递变量
// -------------------------------------------------

// 定义重复结构(循环传递)
typedef struct
{
	char username[256];
	char password[256];
	int count;
}StructAll;

static StructAll ptr[1024] = { 0 };

// 模拟进程列表赋值测试
int ShowProcess(int process_count)
{
	memset(ptr, 0, sizeof(StructAll) * process_count);
	int x = 0;

	for (; x < process_count + 1; x++)
	{
		strcpy_s(ptr[x].username, 256, "hello lyshark.com");
		strcpy_s(ptr[x].password, 256, "123456");
	}

	// 设置总共有多少个结构体,并返回结构体个数
	ptr[0].count = x;
	return x;
}

// 驱动绑定默认派遣函数
NTSTATUS DefaultDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp)
{
	_pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED;
	_pIrp->IoStatus.Information = 0;
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return _pIrp->IoStatus.Status;
}

// 驱动卸载的处理例程
VOID DriverUnload(PDRIVER_OBJECT pDriverObj)
{
	if (pDriverObj->DeviceObject)
	{
		UNICODE_STRING strLink;

		// 删除符号连接和设备
		RtlInitUnicodeString(&strLink, LINK_NAME);
		IoDeleteSymbolicLink(&strLink);
		IoDeleteDevice(pDriverObj->DeviceObject);
		DbgPrint("[kernel] # 驱动已卸载 \n");
	}
}

// IRP_MJ_CREATE 对应的处理例程,一般不用管它
NTSTATUS DispatchCreate(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
	DbgPrint("[kernel] # 驱动处理例程载入 \n");
	pIrp->IoStatus.Status = STATUS_SUCCESS;
	pIrp->IoStatus.Information = 0;
	IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	return STATUS_SUCCESS;
}

// IRP_MJ_CLOSE 对应的处理例程,一般不用管它
NTSTATUS DispatchClose(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
	DbgPrint("[kernel] # 关闭派遣 \n");
	pIrp->IoStatus.Status = STATUS_SUCCESS;
	pIrp->IoStatus.Information = 0;
	IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	return STATUS_SUCCESS;
}

// IRP_MJ_DEVICE_CONTROL 对应的处理例程,驱动最重要的函数
NTSTATUS DispatchIoctl(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
	NTSTATUS status = STATUS_INVALID_DEVICE_REQUEST;
	PIO_STACK_LOCATION pIrpStack;
	ULONG uIoControlCode;
	PVOID pIoBuffer;
	ULONG uInSize;
	ULONG uOutSize;

	// 获得IRP里的关键数据
	pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

	// 获取控制码
	uIoControlCode = pIrpStack->Parameters.DeviceIoControl.IoControlCode;

	// 输入和输出的缓冲区(DeviceIoControl的InBuffer和OutBuffer都是它)
	pIoBuffer = pIrp->AssociatedIrp.SystemBuffer;

	// EXE发送传入数据的BUFFER长度(DeviceIoControl的nInBufferSize)
	uInSize = pIrpStack->Parameters.DeviceIoControl.InputBufferLength;

	// EXE接收传出数据的BUFFER长度(DeviceIoControl的nOutBufferSize)
	uOutSize = pIrpStack->Parameters.DeviceIoControl.OutputBufferLength;

	// 对不同控制信号的处理流程
	switch (uIoControlCode)
	{
	// 测试MDL传输多次结构体
	case IOCTL_IO_MDLStructAll:
	{
		// 获取到当前列表数据
		int count = ShowProcess(715);
		long pool_size = sizeof(MyData) * count;

		DbgPrint("总进程数: %d  分配内存池大小: %d \n", count, pool_size);

		__try
		{
			// 分配内核空间
			PVOID pShareMM_SYS = ExAllocatePool(NonPagedPool, pool_size);
			RtlZeroMemory(pShareMM_SYS, pool_size);

			// 创建MDL
			PMDL pShareMM_MDL = IoAllocateMdl(pShareMM_SYS, pool_size, FALSE, FALSE, NULL);
			MmBuildMdlForNonPagedPool(pShareMM_MDL);

			// 将内核空间映射到用户空间
			PVOID pShareMM_User = MmMapLockedPagesSpecifyCache(pShareMM_MDL, UserMode, MmCached, NULL, FALSE, NormalPagePriority);

			// 拷贝发送数据
			RtlCopyMemory(pShareMM_SYS, &ptr, sizeof(ptr[0]) * count);

			DbgPrint("[lyshark.com] 用户地址空间: 0x%x \n", pShareMM_User);
			DbgPrint("[lyshark.com] 内核地址空间: 0x%p \n", pShareMM_SYS);

			// 将字符串指针发送给应用层
			*(PVOID *)pIrp->AssociatedIrp.SystemBuffer = pShareMM_User;

			// ExFreePool(pShareMM_SYS);
		}
		__except (EXCEPTION_EXECUTE_HANDLER)
		{
			break;
		}
		status = STATUS_SUCCESS;
		break;
	}
	}

	// 设定DeviceIoControl的*lpBytesReturned的值(如果通信失败则返回0长度)
	if (status == STATUS_SUCCESS)
	{
		pIrp->IoStatus.Information = uOutSize;
	}
	else
	{
		pIrp->IoStatus.Information = 0;
	}

	// 设定DeviceIoControl的返回值是成功还是失败
	pIrp->IoStatus.Status = status;
	IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	return status;
}

// 驱动的初始化工作
NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObj, PUNICODE_STRING pRegistryString)
{
	NTSTATUS status = STATUS_SUCCESS;
	UNICODE_STRING ustrLinkName;
	UNICODE_STRING ustrDevName;
	PDEVICE_OBJECT pDevObj;

	// 初始化其他派遣
	for (ULONG i = 0; i < IRP_MJ_MAXIMUM_FUNCTION; i++)
	{
		DbgPrint("初始化派遣: %d \n", i);
		pDriverObj->MajorFunction[i] = DefaultDispatch;
	}

	// 设置分发函数和卸载例程
	pDriverObj->MajorFunction[IRP_MJ_CREATE] = DispatchCreate;
	pDriverObj->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;
	pDriverObj->MajorFunction[IRP_MJ_DEVICE_CONTROL] = DispatchIoctl;
	pDriverObj->DriverUnload = DriverUnload;

	// 创建一个设备
	RtlInitUnicodeString(&ustrDevName, DEVICE_NAME);

	// FILE_DEVICE_EXTENSION 创建设备时,指定设备扩展内存的大小,传一个值进去,就会给设备分配一块非页面内存。
	status = IoCreateDevice(pDriverObj, sizeof(FILE_DEVICE_EXTENSION), &ustrDevName, FILE_DEVICE_UNKNOWN, 0, FALSE, &pDevObj);
	if (!NT_SUCCESS(status))
	{
		return status;
	}

	// 判断支持的WDM版本,其实这个已经不需要了,纯属WIN9X和WINNT并存时代的残留物
	if (IoIsWdmVersionAvailable(1, 0x10))
	{
		RtlInitUnicodeString(&ustrLinkName, LINK_GLOBAL_NAME);
	}
	else
	{
		RtlInitUnicodeString(&ustrLinkName, LINK_NAME);
	}

	// 创建符号连接
	status = IoCreateSymbolicLink(&ustrLinkName, &ustrDevName);
	if (!NT_SUCCESS(status))
	{
		DbgPrint("创建符号链接失败 \n");
		IoDeleteDevice(pDevObj);
		return status;
	}
	DbgPrint("[kernel] # hello lyshark.com \n");

	// 返回加载驱动的状态(如果返回失败,驱动讲被清除出内核空间)
	return STATUS_SUCCESS;
}

应用层客户端程序lyshark.exe完整代码;

// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com

#include <iostream>
#include <Windows.h>
#include <vector>

#pragma comment(lib,"user32.lib")
#pragma comment(lib,"advapi32.lib")

// 定义驱动功能号和名字,提供接口给应用程序调用
#define IOCTL_IO_MDLStructAll   0x805

class cDrvCtrl
{
public:
	cDrvCtrl()
	{
		m_pSysPath = NULL;
		m_pServiceName = NULL;
		m_pDisplayName = NULL;
		m_hSCManager = NULL;
		m_hService = NULL;
		m_hDriver = INVALID_HANDLE_VALUE;
	}
	~cDrvCtrl()
	{
		CloseServiceHandle(m_hService);
		CloseServiceHandle(m_hSCManager);
		CloseHandle(m_hDriver);
	}

	// 安装驱动
	BOOL Install(PCHAR pSysPath, PCHAR pServiceName, PCHAR pDisplayName)
	{
		m_pSysPath = pSysPath;
		m_pServiceName = pServiceName;
		m_pDisplayName = pDisplayName;
		m_hSCManager = OpenSCManagerA(NULL, NULL, SC_MANAGER_ALL_ACCESS);
		if (NULL == m_hSCManager)
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		m_hService = CreateServiceA(m_hSCManager, m_pServiceName, m_pDisplayName,
			SERVICE_ALL_ACCESS, SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START, SERVICE_ERROR_NORMAL,
			m_pSysPath, NULL, NULL, NULL, NULL, NULL);
		if (NULL == m_hService)
		{
			m_dwLastError = GetLastError();
			if (ERROR_SERVICE_EXISTS == m_dwLastError)
			{
				m_hService = OpenServiceA(m_hSCManager, m_pServiceName, SERVICE_ALL_ACCESS);
				if (NULL == m_hService)
				{
					CloseServiceHandle(m_hSCManager);
					return FALSE;
				}
			}
			else
			{
				CloseServiceHandle(m_hSCManager);
				return FALSE;
			}
		}
		return TRUE;
	}

	// 启动驱动
	BOOL Start()
	{
		if (!StartServiceA(m_hService, NULL, NULL))
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		return TRUE;
	}

	// 关闭驱动
	BOOL Stop()
	{
		SERVICE_STATUS ss;
		GetSvcHandle(m_pServiceName);
		if (!ControlService(m_hService, SERVICE_CONTROL_STOP, &ss))
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		return TRUE;
	}

	// 移除驱动
	BOOL Remove()
	{
		GetSvcHandle(m_pServiceName);
		if (!DeleteService(m_hService))
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		return TRUE;
	}

	// 打开驱动
	BOOL Open(PCHAR pLinkName)
	{
		if (m_hDriver != INVALID_HANDLE_VALUE)
			return TRUE;
		m_hDriver = CreateFileA(pLinkName, GENERIC_READ | GENERIC_WRITE, 0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);
		if (m_hDriver != INVALID_HANDLE_VALUE)
			return TRUE;
		else
			return FALSE;
	}

	// 发送控制信号
	BOOL IoControl(DWORD dwIoCode, PVOID InBuff, DWORD InBuffLen, PVOID OutBuff, DWORD OutBuffLen, DWORD *RealRetBytes)
	{
		DWORD dw;
		BOOL b = DeviceIoControl(m_hDriver, CTL_CODE_GEN(dwIoCode), InBuff, InBuffLen, OutBuff, OutBuffLen, &dw, NULL);
		if (RealRetBytes)
			*RealRetBytes = dw;
		return b;
	}
private:

	// 获取服务句柄
	BOOL GetSvcHandle(PCHAR pServiceName)
	{
		m_pServiceName = pServiceName;
		m_hSCManager = OpenSCManagerA(NULL, NULL, SC_MANAGER_ALL_ACCESS);
		if (NULL == m_hSCManager)
		{
			m_dwLastError = GetLastError();
			return FALSE;
		}
		m_hService = OpenServiceA(m_hSCManager, m_pServiceName, SERVICE_ALL_ACCESS);
		if (NULL == m_hService)
		{
			CloseServiceHandle(m_hSCManager);
			return FALSE;
		}
		else
		{
			return TRUE;
		}
	}

	// 获取控制信号对应字符串
	DWORD CTL_CODE_GEN(DWORD lngFunction)
	{
		return (FILE_DEVICE_UNKNOWN * 65536) | (FILE_ANY_ACCESS * 16384) | (lngFunction * 4) | METHOD_BUFFERED;
	}

public:
	DWORD m_dwLastError;
	PCHAR m_pSysPath;
	PCHAR m_pServiceName;
	PCHAR m_pDisplayName;
	HANDLE m_hDriver;
	SC_HANDLE m_hSCManager;
	SC_HANDLE m_hService;
};

void GetAppPath(char *szCurFile)
{
	GetModuleFileNameA(0, szCurFile, MAX_PATH);
	for (SIZE_T i = strlen(szCurFile) - 1; i >= 0; i--)
	{
		if (szCurFile[i] == '\\')
		{
			szCurFile[i + 1] = '\0';
			break;
		}
	}
}

// -------------------------------------------------
// MDL数据传递变量
// -------------------------------------------------
// 定义重复结构(循环传递)
typedef struct
{
	char username[256];
	char password[256];
	int count;
}StructAll;

int main(int argc, char *argv[])
{
	cDrvCtrl DriveControl;

	// 设置驱动名称
	char szSysFile[MAX_PATH] = { 0 };
	char szSvcLnkName[] = "WinDDK";;
	GetAppPath(szSysFile);
	strcat(szSysFile, "WinDDK.sys");

	// 安装并启动驱动
	DriveControl.Install(szSysFile, szSvcLnkName, szSvcLnkName);
	DriveControl.Start();

	// 打开驱动的符号链接
	DriveControl.Open("\\\\.\\WinDDK");

	// 直接输出循环结构体
	StructAll *ptr;

	// 派遣命令
	DriveControl.IoControl(IOCTL_IO_MDLStructAll, 0, 0, &ptr, sizeof(PVOID), 0);

	printf("[LyShark.com] 共享内存地址: %x \n", ptr);

	long size = ptr[0].count;

	std::cout << "得到结构体总数: " << size << std::endl;

	for (int x = 0; x < size; x++)
	{
	std::cout << "计数器: " << x << std::endl;
	std::cout << "用户名: " << ptr[x].username << std::endl;
	std::cout << "密码: " << ptr[x].password << std::endl;
	std::cout << std::endl;
	}

	// 关闭符号链接句柄
	CloseHandle(DriveControl.m_hDriver);

	// 停止并卸载驱动
	DriveControl.Stop();
	DriveControl.Remove();

	system("pause");
	return 0;
}

手动编译这两个程序,将驱动签名后以管理员身份运行lyshark.exe客户端,此时屏幕中即可看到滚动输出效果,如此一来就实现了循环传递参数的目的。

驱动开发:通过MDL映射实现多次通信文章来源地址https://www.toymoban.com/news/detail-429062.html

到了这里,关于驱动开发:通过MDL映射实现多次通信的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 在windows系统中映射网络驱动器时,如何通过非455端口远程访问Linux服务器的Samba服务

    通常情况下,在windows中通过Linux服务器的Samba服务去映射网络驱动器时候,一般默认就是直接填入内网Linux服务器ip即可,它会默认445端口。 若是我的windows并不和Linux服务器在一个网段时,该如何操作呢? 是 pid 为 4 的进程进行监听。 右键 电脑–管理–服务和应用程序–服务

    2024年02月11日
    浏览(47)
  • 【IMX6ULL驱动开发学习】19.mmap内存映射

    mmap将一个文件或者其它对象映射进内存 ,使得应用层可以直接读取到驱动层的数据,无需通过copy_to_user函数 可以用于像LCD这样的外设, 需要读写大量数据的 一、应用层 mmap用法: 用open系统调用打开文件, 并返回描述符fd. 用mmap建立内存映射, 并返回映射首地址指针start. 对映

    2024年02月16日
    浏览(49)
  • 【零基础 STM32通过CAN通信驱动Maxon电机】第三章 STM32 CAN通信回环模式测试及Maxon电机通信

    第三章 STM32 CAN通信回环模式测试及Maxon电机通信 正点原子官方给的CAN通信例程需要lcd显示屏和两块板子,本章修改代码,仅用一块STM32进行回环模式的测试。 首先下载修改后的程序,运行并烧录(接线方式和运行方式与上一章完全相同)。注意板子右侧的接线帽要接正确,

    2024年01月21日
    浏览(41)
  • 【群晖Nas开启WebDAV服务,路由器映射端口,实现Win10远程映射网路驱动器】

    登录群晖,在套件中心里搜索并安装WebDAV Server。 启用http与https端口,并点击应用。 进入路由器设置页面,映射相应端口,保存并重启路由。 在win10中,按Win+R打开运行,输入regedit打开注册表,并找到“计算机HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesWebClientParameters”,打开

    2024年02月05日
    浏览(54)
  • 驱动开发常见的通信接口介绍

            本文将为您详细讲解驱动开发中常见的通信接口,以及它们的特点、区别和应用场景。在操作系统和硬件设备之间,通信接口扮演着至关重要的角色,它们定义了数据如何在软件和硬件之间传输和交互。          1. 串行通信接口(Serial Communication)       

    2024年03月14日
    浏览(43)
  • 驱动开发:基于事件同步的反向通信

    在之前的文章中 LyShark 一直都在教大家如何让驱动程序与应用层进行 正向通信 ,而在某些时候我们不仅仅只需要正向通信,也需要反向通信,例如杀毒软件如果驱动程序拦截到恶意操作则必须将这个请求动态的转发到应用层以此来通知用户,而这种通信方式的实现有多种,

    2024年02月09日
    浏览(38)
  • 【DRV8323】电机驱动芯片寄存器配置指南,通过STM32F407的SPI通信配置

    笔者计划使用一块使用到STM32F407控制芯片与DRV8323s驱动芯片的板子,驱动BLDC。了解到需要使用SPI通信来配置DRV8323s驱动芯片,配置过程中涉及DRV8323数据手册中提及的几个寄存器,故写此文做个记录。 另外,DRV8323芯片和DRV8302、DRV8303、DRV8353都有极大的相似之处,可以相互参考

    2024年02月02日
    浏览(60)
  • windows驱动开发7:应用程序和驱动程序的通信

    一、基础介绍 1.1 设备与驱动的关系 设备由驱动去创建,访问一个设备,是首先得访问驱动。如果驱动在卸载的时候没有删除符号,r3下也是不能去访问设备的。 驱动程序和系统其他组件之间的交互是通过给设备发送或者接受发给设备的请求来交互的。换句话说,一个没有任

    2023年04月08日
    浏览(49)
  • 正点原子驱动开发BUG(一)--SPI无法正常通信

    使用正点的im6ull开发板进行spi通信驱动开发实验的时候,主机无法与从机进行正常通信。就算使用正点的例程,也无法正常通信。读不到从机寄存器中的值。以读取从机ID为例,例子为正点原子的例程基础上添加了几行 printk 用来打印信息: 读ID失败,读出来ID是0,单纯是因为

    2024年02月03日
    浏览(53)
  • 如何通过nginx反向代理实现不同域名映射到同一台服务器的相同端口

    要在Nginx中实现不同域名映射到同一台服务器的相同端口,您可以使用Nginx的代理转发技术。 首先,您需要了解Nginx的代理转发工作原理。Nginx的代理转发是指在代理服务器(proxy server)收到一个请求时,先将请求转发给目标服务器(target server),然后将服务器的响应返回给代

    2024年02月13日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包