GNSS/INS组合导航实习面试

这篇具有很好参考价值的文章主要介绍了GNSS/INS组合导航实习面试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

GNSS/INS组合导航面试

美团无人机、云创智行、阿里达摩院、图森蔚来组合导航、来牟创新腾讯地图出行事业部百度地图
持续更新

1.GNSS方面的问题

模糊度固定的方法,以及部分模糊度固定

http://t.csdn.cn/2LGQV
https://blog.csdn.net/dong20081991/article/details/129223718

多普勒和载波为什么精度更高,对多径更不敏感
  • 多普勒测量通过测量相位变化,可以彻底消除钟误差影响,而伪距测量仍受发射机和接收机钟误差影响。
  • 多普勒相位测量采用差分技术可以进一步提高精度,将大气误差和其他误差消除,而这些误差对伪距测量也有影响
  • 多普勒相位测量可以实现载波整周期伪距测量,避免码定时引入的余弦误差,而伪距测量会受余弦误差影响。
  • 多普勒测量使用相位测量技术,可以实现毫米级精度,而伪距测量受限于码定时精度,精度难以达到毫米级

综上,多普勒相位测量采用相位技术,可以对钟误差和大气误差实现更好补偿,从而达到更高的精度。它直接测量速度变化,避免了计算速度变化引入的额外误差。相位测量与差分技术的结合,使其精度优势更加明显。多普勒测量虽然精度高,但也面临相位失锁等问题,无法长期连续跟踪。而伪距测量虽精度稍差,但更稳定可靠,两者在GNSS中常结合使用,发挥各自优势。]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2ALrjZpN-1682438050464)(…/…/AppData/Roaming/Typora/typora-user-images/image-20230425223751953.png)]

电离层误差为什么对载波和伪距的影响相反(在观测方程中符号相反)

电离层误差对载波相位测量和伪距测量的影响相反,主要原因是两者的测量机制不同:

  1. 载波相位测量依赖信号的相位,电离层误差会造成信号传播速度变化,从而导致相位产生跳变。
  2. 而伪距测量依赖信号的到达时间,电离层误差会减慢信号传播速度,信号需更长时间到达接收机,。
  3. 载波相位测量测量的是相位变化,而伪距测量测量的是码定时,两者受电离层影响的机制不同,因而误差方向相反。
  4. 载波相位测量的误差与信号频率成正比,频率越高误差越大。而伪距测量的误差与信号频率无关。

综上,电离层误差通过改变信号在电离层的传播速度,对载波相位测量和伪距测量产生相反影响**,前者增加距离,后者减小距离**。两者的测量机制不同,频率依赖性也不同,因而表现出相反的误差特征。对GNSS测量而言,电离层误差是一个很难补偿的误差源,需要采用对应的算法模型进行建模与补偿,或者使用实测的电离层数据进行校正

载波和伪距的观测方程

GNSS/INS组合导航实习面试

​ GNSS 接收机接收到的原始观测信息为伪距观测值和相位观测值, 伪距观测 值由伪随机噪声码计算获得卫星与接收机之间的距离, 相位观测值则是由接收机 复制载波与卫星播发载波之间的载波相位差, 在连续跟踪的情况下, 多历元相位 观测值与实际的卫地距之间差一个固定的整周数, 即整周模糊度。伪距和相位的 观测方程主要可描述如下:
{ P r , f s = ρ r S + t r , s y s − t s + α r s T z + 40.3 f 2 γ r s I r s − b s , f + b r , f + ε p Φ r , f s = ρ r s + t r , s y s − t s + α r s T z − 40.3 f 2 γ r s I r s + λ f N r , f s + ε Φ \left\{\begin{array}{l} P_{r, f}^s=\rho_r^S+t_{r, s y s}-t^s+\alpha_r^s T_z+\frac{40.3}{f^2} \gamma_r^s I_r^s-b^{s, f}+b_{r, f}+\varepsilon_p \\ \Phi_{r, f}^s=\rho_r^s+t_{r, s y s}-t^s+\alpha_r^s T_z-\frac{40.3}{f^2} \gamma_r^s I_r^s+\lambda_f N_{r, f}^s+\varepsilon_{\Phi} \end{array}\right. {Pr,fs=ρrS+tr,systs+αrsTz+f240.3γrsIrsbs,f+br,f+εpΦr,fs=ρrs+tr,systs+αrsTzf240.3γrsIrs+λfNr,fs+εΦ
式中, P 、 Φ P 、 \Phi PΦ 分别为伪距和相位观测值, ρ = ∥ p S − p r ∥ \rho=\sqrt{\left\|p^S-p_r\right\|} ρ=pSpr , 其中 p S 、 p r p^S 、 p_r pSpr 分别为卫星与接收机位置, t r , s y s 、 t s t_{r, s y s} 、 t^s tr,systs 分别为接收机和卫星钟差, 在进行单点定位解算时, 通 常忽略精密星历给出的卫星位置与卫星钟差误差; T Z 、 I T_Z 、 I TZI 分别为天顶对流层误差 和电离层误差, α 、 γ \alpha 、 \gamma αγ 则分别为对应的投影函数, b r , f 、 b s , f b_{r, f} 、 b^{s, f} br,fbs,f 分别为接收机端和卫星 端硬件延迟误差, N 、 λ N 、 \lambda Nλ 为模糊度和波长, ε p 、 ε Φ \varepsilon_p 、 \varepsilon_{\Phi} εpεΦ 为观测噪声。角标 f 、 s 、 r f 、 s 、 r fsr 分别 表示对应的频率和卫星号及接收机。

针对 式中的误差处理方式主要有三种:模型改正、组合/差分消除、 参数估计:

观测值的组合:GNSS观测方程及线性组合

电离层误差为啥对高程影响更严重

电离层误差在水平方向的投影可以互相消除,而在高程都是叠加

周跳探测有哪些方法

周跳探测的常用方法

周跳产生的原因

  • 第一,由于障碍物的短时间遮挡。
  • 第二,接收机的快速运动。
  • 第三,接收机接收到的卫星信号信噪比比较低。
  • 第四,接收机硬件的故障或者软件的不完善。
  • 第五,卫星的原因。

GNSS/INS组合导航实习面试

GNSS/INS组合导航实习面试

GNSS观测值的组合

(其中 R i R_i Ri Φ i , i = 1 , 2 \Phi_i,i=1 , 2 Φi,i=1,2表示在频率 f 1 f_1 f1 f 2 f_2 f2的测量值,为简单起见省略了 P P P L L L):

  • 无电离层(IF)组合:这消除了取决于频率反比平方的一阶(高达 99.9 99.9 %) 99.9电离层效应 ( α i ∝ 1 / f i 2 \left(\alpha_i \propto 1 / f_i^2\right. (αi1/fi2,见第5.4.1节)
    Φ C = f 1 2 Φ 1 − f 2 2 Φ 2 f 1 2 − f 2 2 , R C = f 1 2 R 1 − f 2 2 R 2 f 1 2 − f 2 2 \Phi_C=\frac{f_1^2 \Phi_1-f_2^2 \Phi_2}{f_1^2-f_2^2}, \quad R_C=\frac{f_1^2 R_1-f_2^2 R_2}{f_1^2-f_2^2} ΦC=f12f22f12Φ1f22Φ2,RC=f12f22f12R1f22R2

  • 几何无关(GF)组合:这取消了测量中的几何部分,留下了所有频率相关的效应(即电离层折射,仪器延迟,回转)。它可以用于估计电离层电子含量或检测载波相位的周跳。请注意, Φ I \Phi_I ΦI R I R_I RI中项的顺序发生了变化:
    Φ I = Φ 1 − Φ 2 , R I = R 2 − R 1 \Phi_I=\Phi_1-\Phi_2, \quad R_I=R_2-R_1 ΦI=Φ1Φ2,RI=R2R1

  • 宽巷组合:这些组合用于创建一个具有显着宽波长的测量。这种较长波长对于检测载波相位的周跳和固定模糊度非常有用:
    Φ W = f 1 Φ 1 − f 2 Φ 2 f 1 − f 2 , R W = f 1 R 1 − f 2 R 2 f 1 − f 2 \Phi_W=\frac{f_1 \Phi_1-f_2 \Phi_2}{f_1-f_2}, \quad R_W=\frac{f_1 R_1-f_2 R_2}{f_1-f_2} ΦW=f1f2f1Φ1f2Φ2,RW=f1f2f1R1f2R2

  • 窄巷组合:这些组合创建具有窄波长的测量。此组合中的测量噪声低于每个独立分量:
    Φ N = f 1 Φ 1 + f 2 Φ 2 f 1 + f 2 , R N = f 1 R 1 + f 2 R 2 f 1 + f 2 \Phi_N=\frac{f_1 \Phi_1+f_2 \Phi_2}{f_1+f_2}, \quad R_N=\frac{f_1 R_1+f_2 R_2}{f_1+f_2} ΦN=f1+f2f1Φ1+f2Φ2,RN=f1+f2f1R1+f2R2

    Φ W \Phi_W ΦW R N R_N RN与电离层相关,可用于消除电离层误差。

2. 惯性导航方面

  • 零偏、零偏不稳定性、上电重复性
  • 零偏不稳定意味着什么,长时间零偏会不会发散

3. 滤波

图解kalman滤波

(27条消息) 滤波笔记一:卡尔曼滤波(Kalman Filtering)详解_scoutee的博客-CSDN博客

(27条消息) 滤波笔记二:运动模型(CV&CA&CTRV)_ctrv模型_scoutee的博客-CSDN博客

(27条消息) 滤波笔记三:无迹卡尔曼滤波(UKF)_scoutee的博客-CSDN博客

  • kalman滤波的使用条件以及为什么 线性 高斯白噪声

  • EKF和ESKF

4. c++ git cmake

c++八股文相关内容

  • 左值引用、右值引用
    (27条消息) C++ 移动构造函数详解_a只如初见的博客-CSDN博客

  • 子类和父类构造函数、析构函数的调用顺序

  • 智能指针

  • 类和它的成员类的构造函数和析构函数的调用顺序

  • map unordered_map 的区别, 增删查改的复杂度

  • vector 扩容机制 ,空vector push_back n个值的复杂度(2n,双倍增长内存时)

  • STL容器的底层实现原理

    (27条消息) STL容器详解_KuoGavin的博客-CSDN博客
    GNSS/INS组合导航实习面试

    STL面试问题总结 (flowus.cn)

  • c++中的强制类型转换

    (27条消息) c++面试——强制类型转换_hyisoe的博客-CSDN博客

GIT

  • add commit push 的作用和区别
  • 如何解决冲突

cmake

  • find_package()是如何找到我所需的库的 .a .so .lib .dll

cmake中的find_package命令用于查找软件包并加载软件包的相关设置。它主要通过以下几种方式找到软件包:

  • CMAKE_PREFIX_PATH这个变量包含一系列目录,cmake会在这些目录中搜索软件包。我们可以通过设置这个变量来指定搜索路径。例如:
set(CMAKE_PREFIX_PATH /usr/local/lib/cmake)
find_package(PackageName)
  • _DIR如果定义了_DIR变量,cmake会直接在该变量指定的路径下搜索软件包。例如:
set(PackageName_DIR /path/to/package)
find_package(PackageName)
  • 环境变量cmake会检查相关环境变量,如DIR,看其是否定义了软件包路径。如果定义了,就在该路径下搜索软件包。
  • 默认目录如果以上方式都未指定路径,那么cmake会在一系列默认路径下搜索软件包,通常在/usr/ 和 /usr/local/ 下搜索。
  • _ROOT如果定义了_ROOT变量,cmake会在 < P A C K A G E > R O O T / s h a r e 和 {<PACKAGE>_ROOT}/share和 <PACKAGE>ROOT/share{ROOT}/lib下搜索软件包。
  • 根目录如果以上方式均未找到,那么就在根目录/下搜索软件包。

总之,cmake通过环境变量、用户定义变量和默认规则寻找软件包目录,并在这些路径下搜索find_package()要查找的软件包。
如果成功找到,就会定义一系列变量,如:_FOUND、_INCLUDE_DIRS、<PACKAGE_LIBRARIES等,我们可以在CMakeLists.txt中使用。文章来源地址https://www.toymoban.com/news/detail-429184.html

编程题

  • 手撕LRU
  • 滑动窗口内的求众数
  • 最大前x和后y个数的和 [1 -1 2 1 -6 1]-> ans = 1+1 =2
  • 二叉树遍历
  • 爬楼梯

到了这里,关于GNSS/INS组合导航实习面试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 去美团实习了

    作者:阿秀 校招八股文学习网站:https://interviewguide.cn 这是阿秀的第「251」篇原创 小伙伴们大家好,我是阿秀。 春招过半,很多学弟学妹都慢慢拿到了一些offer,其中上岸美团的相当不少,近一周以来断断续续收到不少私信说上岸美团的消息。于是我邀请了其中一些比较不错

    2023年04月11日
    浏览(27)
  • 美团后端开发暑期实习一面

    1、为什么使用UDP协议?缺点? 使用UDP协议的主要原因是它能够在网络中提供快速和高效的数据传输。与TCP协议相比,UDP协议没有建立连接和确认数据包的过程,因此具有更低的延迟和更高的吞吐量,适用于需要快速响应的应用场景,如在线游戏、视频和音频流等。 缺点,由

    2023年04月21日
    浏览(64)
  • 2022春招实习面经【美团、阿里、微软、字节、米哈游】

    目录 写在前面 一,美团——快驴事业部 1,时间线 2,笔试 3,面试 一面 二面 二,阿里——大淘宝技术 1,时间线 2,笔试 3,面试 一面 二面 三,微软——苏州STCA 1,时间线 2,笔试 3,面试 一面 终面 四,字节——商业化技术 1,时间线 2,笔试 3,面试 一面 二面 三面 hr面

    2024年02月06日
    浏览(35)
  • 【物联网】BDS/GNSS 全星座定位导航模块——ATGM332D-5N

    随着科技的不断进步,导航系统已经成为我们日常生活中不可或缺的一部分。传统的导航系统往往只提供基本的地图和路线规划,对于一些特殊需求或个性化定位并不够满足。 全星座定位导航模块 的出现,为我们带来了全新的导航体验。通过结合星座学说和个人特质,这一

    2024年02月05日
    浏览(38)
  • 【面试】美团面试真题和答案

    问题来源于某客,如下图所示: 问题链接:https://www.nowcoder.com/feed/main/detail/b12f8ece42f6485d8e462ab872c4f8d8 答案解析 线程池的创建方法总共有 7 种,但总体来说可分为 2 类: 通过 ThreadPoolExecutor 创建的线程池; 通过 Executors 创建的线程池。 线程池的创建方式总共包含以下 7 种(其

    2024年02月12日
    浏览(43)
  • 【美团面试】软件测试面试题

    功能测试(Function test) 0. 什么都不输入,点击提交按钮,看提示信息。(非空检查) 1.输入正确的用户名和密码,点击提交按钮,验证是否能正确登录。(正常输入) 2.输入错误的用户名或者密码, 验证登录会失败,并且提示相应的错误信息。(错误校验) 3.登录成功后能否

    2024年02月16日
    浏览(46)
  • 组合导航原理-松组合+紧组合概念

    广义 任何两种及以上导航定位手段的组合 ◼交汇定位:GNSS、Loran、 ◼ 推算导航:INS、里程推算 ◼ 匹配定位:地形、视觉、道路、地磁/重力匹配 狭义 至少含有一种推算导航手段 ◼ GNSS/INS ◼ GNSS/车载DR ◼ 早期航海、航空 ◼ 生物/人类导航 1.滤波就是从混合在一起的诸多信

    2024年01月18日
    浏览(39)
  • 【面试】-科大讯飞日常实习面试

    面试30min,基本就是介绍项目以及提问java八股文,没有算法题 java保证线程安全的方法 需要根据具体场景选择合适的方法来保证线程安全。 java中的异步请求如何实现 你的SpringBoot项目怎么匹配在线人数 请说出spring springMVC springboot之间的关系和区别 SpringBoot 约定大于配置什么意思

    2024年01月21日
    浏览(40)
  • Linux 面试题-(腾讯,百度,美团,滴滴)

    http://192.168.200.10/index1.html http://192.168.200.10/index2.html http://192.168.200.20/index1.html http://192.168.200.30/index1.html http://192.168.200.40/index1.html http://192.168.200.30/order.html http://192.168.200.10/order.html 答案: cat t.txt | cut -d ‘/’ -f 3 | sort | uniq -c | sort -nr netstat -an | grep ESTABLISHED | awk -F \\\" \\\" ‘{print $5

    2024年02月08日
    浏览(56)
  • RabbitMQ实习面试题

    RabbitMQ实习面试题 在 RabbitMQ 中,确保生产者消息正确发布以及确保消费者已经消费是非常重要的任务。以下是一些方法和策略,可以帮助您在 RabbitMQ 中实现这些目标: 确保生产者消息正确发布 : 持久化消息 :将消息设置为持久化,这样即使 RabbitMQ 服务器在消息发布后崩溃

    2024年02月12日
    浏览(81)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包