PINNs与DeepXDE:加速物理计算模型

这篇具有很好参考价值的文章主要介绍了PINNs与DeepXDE:加速物理计算模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

《AI+Science系列(一):飞桨加速CFD(计算流体力学)原理与实践》

https://baijiahao.baidu.com/s?id=1728002499252273827&wfr=spider&for=pc

前言

AI+Science专栏由百度飞桨科学计算团队出品,给大家带来在AI+科学计算领域中的一系列技术分享,欢迎大家关注和积极讨论,也希望志同道合的小伙伴加入飞桨社区,互相学习,一起探索前沿未知。

作为系列分享的第一篇,本文内容涵盖行业背景与痛点、AI+科学计算领域的前沿算法、基于飞桨的AI+科学计算产品方案、涉及的飞桨框架关键技术以及PINNs方法求解计算流体力学方腔流的案例等。

行业背景与痛点

当前AI技术在CV、NLP等领域已有了较为广泛的应用,替代传统方法完成缺陷检测、人脸检测、物体分割、阅读理解、文本生成等任务,在产业界也形成了规模化的落地。但是放眼到更加广阔的工业设计、制造等领域,仍有诸多科学和工程问题亟待解决。比如对于高层建筑结构、大跨桥梁、海上石油平台、航空飞机等,流体和结构的复杂相互作用会引起动力荷载,进而导致抖振、涡振、驰振、颤振等流致振动,影响结构安全与服役年限。数值模拟是研究工程结构流致振动的有效方法之一,但是传统数值方法需要大量的计算资源,在计算速度上有很大的局限性等等。

AI+科学计算领域
前沿算法与典型应用案例

上述的问题指向了AI+科学计算的发展: 利用深度学习技术突破维数高、时间长、跨尺度的挑战,改变科学研究范式,帮助传统行业转型。提到AI方法,大家直观的印象是大数据、神经网络模型搭建与训练。在CV,NLP等领域中也确实如此,AI方法以数据驱动,训练出神经网络以模拟图像分类、语音识别等实际问题中隐含的复杂逻辑,整体是一个“黑盒”问题。但在解决科学计算相关问题上,使用的AI方法有所变化,除了使用纯数据驱动方法解决问题外,有时候还需要加入一些物理信息约束,因此,需要更多的领域相关知识。

具体来看,在科学计算领域,往往需要针对海洋气象、能源材料、航空航天、生物制药等具体场景中的物理问题进行模拟。由于大多数物理规律可以表达为偏微分方程的形式,所以偏微分方程组的求解成为了解决科学计算领域问题的关键。神经网络具备“万能逼近”的能力,即只要网络有足够多的神经元,就可以充分地逼近任意一个连续函数。所以使用AI方法解决科学计算问题的一个思路是训练神经网络以模拟某个偏微分方程组的解函数。使用AI 方法解决科学计算问题,相对传统方法有一些潜在的优势:

(1)高维问题处理优势传统方法一般是基于有限差分、有限元、有限体积等方法,求得偏微分方程组的近似解。这些方法面临着“维度灾难”,即计算量随着维度增加快速增长。在AI方法的神经网络中,维度增加带来的计算量增加是线性的。

(2)硬件加速优势传统方法由于存在串行运算,往往难以使用GPU等硬件进行加速。AI方法中的训练和推理过程都比较容易发挥GPU等硬件优势。

(3)泛化优势AI方法解决问题分为训练和推理两个过程,一次训练,多次推理。借助神经网络的泛化能力,在某些物理参数条件下训练出的网络,在其他物理参数下也可以获得很好的模拟效果。

AI+科学计算领域中最著名的方法是PINNs(Physics-informed neural networks)方法,该方法提出一种新的复合型的损失函数,由偏微分方程组部分,边界条件部分,初始条件部分三部分组成。

PINNs与DeepXDE:加速物理计算模型
由于加入了物理信息约束,该方法在没有任何输入数据的情况下,只指定边界条件和初始条件,就可以训练出神经网络拟合目标PDE的解。也有一些学者在原始PINNs方法的基础上进行改进,加入一些数据,形成偏微分方程部分、边界条件部分、初始条件部分、数据部分4部分组成的损失函数,进一步提高神经网络的模拟精度,在3D不可压的流体问题上取得了不错的结果。如下图所示,分别对三种不同case使用PINNs算法基于二维二元观察速度进行了3D流场重建,并计算了三种case中不同方向速度及压力的L2范数相对误差。可以发现PINNs方法可以精准捕捉漩涡脱落的不稳定性。
PINNs与DeepXDE:加速物理计算模型
PINNs与DeepXDE:加速物理计算模型
PINNs与DeepXDE:加速物理计算模型
PINNs与DeepXDE:加速物理计算模型
总体而言,AI为科学计算问题的解决提供了新的研究范式,无论是AI完全取代传统方法,还是AI与传统方法融合的相关工作都在快速发展,未来会更大程度地影响整个科学计算领域,成为新一代革命性的方向。

基于飞桨的
AI+科学计算产品方案

飞桨科学计算套件提供泛化的微分、积分方程等接口以及两种求解器PINNs(物理信息神经网络)和FNO(傅立叶神经算子),支撑上层应用各种微分、积分方程的求解。并且我们正在开展生态共建,联合打造多个跨领域的仿真模块,并针对各个模块开发典型应用案例。飞桨科学计算套件目前已提供达西流(Darcy Flow)、顶盖方腔流(Lid-driven Cavity Flow)等计算流体力学领域的经典算例。

支撑科学计算的
框架关键技术

飞桨科学计算开发套件整体依托于飞桨核心框架,为了支持科学计算类任务,飞桨核心框架新增了函数式自动微分接口和部分算子高阶自动微分的功能。

自动微分机制是广泛应用于深度学习框架之中微分技术。区别于符号微分和数值微分,自动微分依托深度学习框架中的计算图,在每个计算图节点内进行符号微分,并把节点间的微分结果用数值存储,进而实现比数值微分更精确,比符号微分更高效的微分机制。
PINNs与DeepXDE:加速物理计算模型
《AI与PDE(一):PINNs模型的设计理念和我碰到的一些问题》

https://zhuanlan.zhihu.com/p/411843646

相关阅读材料
PINNs的源码(TF1.0)

https://link.zhihu.com/?target=https%3A//github.com/maziarraissi/PINNs

PINNs作者的blog(建议阅读)

https://link.zhihu.com/?target=https%3A//maziarraissi.github.io/PINNs/

PINNs的Pytorch代码

https://link.zhihu.com/?target=https%3A//github.com/jayroxis/PINNs

DeepXDE的论文(该论文涉及到很多对PINNs模型的理论分析,建议阅读)

https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1907.04502

《飞桨DeepXDE用例验证及评估》

https://zhuanlan.zhihu.com/p/617625201文章来源地址https://www.toymoban.com/news/detail-429616.html

到了这里,关于PINNs与DeepXDE:加速物理计算模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • vivo自研AI大模型即将问世,智能手机行业加速迈向AI时代

    当前,以大模型为代表的人工智能技术已发展为新一轮科技革命和产业变革的重要驱动力量,被视作推动经济社会发展的关键增长极。 AI大模型潮起,千行百业走向百舸争流的AI创新应用期,前沿信息技术向手机、PC、车机等消费级终端加速渗透,不断孕育新业态、新场景、新

    2024年02月06日
    浏览(38)
  • 全域Serverless+AI,华为云加速大模型应用开发

    日前,华为全联接大会2023在上海召开。华为云CTO张宇昕在大会上发布了基于Serverless技术的大模型应用开发框架,框架以面向AI领域全新升级的FunctionGraph 3.0为核心,将BaaS for AI 后端和开放平台快速无缝集成,助力企业轻松商用AI应用。 在“全域Serverless + AI 加速应用创新”专题

    2024年02月08日
    浏览(51)
  • 如何借助分布式存储 JuiceFS 加速 AI 模型训练

    传统的机器学习模型,数据集比较小,模型的算法也比较简单,使用单机存储,或者本地硬盘就足够了,像 JuiceFS 这样的分布式存储并不是必需品。 随着近几年深度学习的蓬勃发展,越来越多的团队开始遇到了单机存储的瓶颈,分布式存储在 AI 领域的重要性不断凸显。AI 团

    2023年04月26日
    浏览(38)
  • 从大数据到AI,华为云存储加速企业大模型快速应用

    摘要: AI与大数据算法不断发展,在生产中的应用也越来越广,而应用的场景除了对算法,软件架构要求越来越高外,也对底层IaaS(基础设施即服务)提出了新的挑战。 AI与大数据算法不断发展,在生产中的应用也越来越广,而应用的场景除了对算法,软件架构要求越来越高

    2024年02月15日
    浏览(47)
  • AI模型在专用加速器上的性能分析指标

            AI模型在专用加速卡上性能分析大概流程: 1)先计算模型本身的计算访存比,得到模型理论算力带宽需求。 2)根据处理器本身支持的操作字节比(算力,带宽),确认模型在该处理器上的性能表现类型。 3)根据专用加速器内部架构的内存和计算并行性的设计,

    2024年01月25日
    浏览(43)
  • rk3588使用npu进行模型转换和推理,加速AI应用落地

    本文完成于2022-07-02 20:21:55 。博主在瑞芯微RK3588的开发板上跑了deepsort跟踪算法,从IP相机中的server拉取rtsp视频流,但是fps只有1.2,和放PPT一样卡顿,无法投入实际应用。本来想使用tensorrt进行加速推理,但是前提需要cuda,rk的板子上都是Arm的手机gpu,没有Nvidia的cuda,所以这条

    2023年04月12日
    浏览(43)
  • 【计算机网络系列】物理层②:信道复用技术(频分复用、时分复用、波分复用及码分复用)

    本文主要介绍物理层中的信道复用技术,包括频分复用、时分复用、波分复用及码分复用技术,以及简单谈谈数字传输系统和几种宽带接入技术。 复用 (multiplexing)是通信技术中的基本概念。计算机网络中的信道广泛地使用各种复用技术。下面对信道复用技术进行简单的介绍。

    2024年02月11日
    浏览(60)
  • 第八章:AI大模型的部署与优化8.1 模型压缩与加速8.1.2 量化与剪枝

    作者:禅与计算机程序设计艺术 8.1.1 背景介绍 随着深度学习技术的不断发展,人工智能模型的规模越来越庞大。然而,这也带来了新的问题:大模型需要更多的计算资源和存储空间,同时在移动设备上运行效率较低。因此,模型压缩与加速成为了当前研究的热点。 8.1.2 核心

    2024年03月08日
    浏览(48)
  • 12秒内AI在手机上完成作画!谷歌提出扩散模型推理加速新方法

    本文源自:量子位 只需12秒,只凭手机自己的算力,就能拿Stable Diffusion生成一张图像。 而且是完成了20次迭代的那种。 要知道,现在的扩散模型基本都超过了10亿参数,想要快速生成一张图片,要么基于云计算,要么就是要本地硬件够强大了。 而随着大模型应用逐渐普及开

    2024年02月01日
    浏览(47)
  • R语言:鉴于计算10亿以内训练模型记录for循环的加速

    笔者主力机是MBA M1芯片(8+256) ,某个下午巩固循环突然思考到个问题,小循环很快就能run出来,中循环还勉勉强强,稍微上点强度就运行的很慢。虽然是CPU占用100%,8颗核心好像是偷着懒跑的,但是丢给我那台 4核心8线程 黑苹果,是跑满的,说明ARM在多线程的时候,有点东

    2024年02月06日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包