OpenCV实战(20)——图像投影关系

这篇具有很好参考价值的文章主要介绍了OpenCV实战(20)——图像投影关系。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 前言

数码相机通过将光线通过镜头投射到图像传感器上来捕捉场景产生图像。由于通过将 3D 场景投影到 2D 平面上形成图像,因此场景与其图像之间以及同一场景的不同图像之间存在重要关系。射影 (Projective geometry) 几何也称投影几何,其使用数学术语描述和表征图像形成过程。在本节中,我们将介绍多视图图像中的一些基本投影关系,并解释如何将它们用于计算机视觉应用程序。我们将学习如何通过使用投影约束使匹配更加准确,以及如何使用两视图关系拼接多个图像。

1. 相机成像原理

我们首先介绍与场景投影和图像形成相关的基本概念。自摄影开始以来,图像的生成过程从本质上来讲并没有改变。来自场景的光线被相机通过正面光圈捕捉到,然后捕获到的光线照射到位于相机背面的图像平面(或图像传感器)。此外,镜头用于汇聚来自不同场景元素的光线,该过程如下图所示:文章来源地址https://www.toymoban.com/news/detail-429872.html

到了这里,关于OpenCV实战(20)——图像投影关系的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 小米12s ultra,索尼xperia1 iv,数码相机 拍照对比

    首先说明所有的测试结果和拍摄数据我放到百度网盘了(地址在结尾) 我一直想知道现在的手机和相机差距有多大,到底差在哪儿? 先说结论: 1.1英寸的手机cmos(2022年) 6年前(2016)的入门款相机(m43画幅) 2.手机 不能换镜头,只能在特定的拍摄距离才能发挥出全部的实力.数码变焦画质损

    2024年02月09日
    浏览(87)
  • 《数字图像处理-OpenCV/Python》连载(1)前言

    本书京东优惠购书链接:https://item.jd.com/14098452.html 写作背景 编写本书的初衷,源自作者学习数字图像处理的经历。 在创新实验班开设的专业创新教育课程中,我选择的是数字图像处理方向。老师向我推荐的教材是冈萨雷斯的《数字图像处理》。学习的开始阶段非常困难。教

    2024年02月11日
    浏览(65)
  • OpenCV——点云投影到图像中

    读取一张照片和一张 pcd, 根据标定的内参和外参,将点云投影到图像中,用于判断雷达相机外参标定是否准确。 后记 :投影部分区域的点云到图像中,不要全部都投。(一般选取标定板所处位置的点云)

    2024年02月06日
    浏览(38)
  • 《数字图像处理-OpenCV/Python》连载(44)图像的投影变换

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 几何变换分为等距变换、相似变换、仿射变换和投影变换,是指对图像的位置、大小、形状和投影进行变换,将图像从原始平面投影到新的视平面。OpenCV图像的几

    2024年02月04日
    浏览(77)
  • opencv(20) 图像阈值(二值化)

    二值化核心思想,设阈值,大于阈值的为0(黑色)或 255(白色),使图像称为黑白图。 阈值可固定,也可以自适应阈值。 自适应阈值一般为一点像素与这点为中序的区域像素平均值或者高斯分布加权和的比较,其中可以设置一个差值也可以不设置。 图像的阈值化旨在提取

    2024年02月02日
    浏览(52)
  • OpenCV10-图像直方图:直方图绘制、直方图归一化、直方图比较、直方图均衡化、直方图规定化、直方图反射投影

    图像直方图就是统计图像中每个灰度值的个数,之后将灰度值作为横轴,以灰度值个数或者灰度值所占比率作为纵轴的统计图。通过直方图,可以看出图像中哪些灰度值数目较多,哪些较少,可以通过一定的方法将灰度值较为集中的区域映射到较为稀疏的区域,从而使图像在

    2024年01月16日
    浏览(53)
  • 大数据、人工智能、机器学习、深度学习关系联系前言

    1.大数据和人工智能关系 2.机器学习、深度学习、人工智能关系 3.监督学习、无监督学习、半监督学习、强化学习、迁移学习关系 4.机器学习具体内容 1.数据驱动的人工智能 :人工智能系统需要大量的数据来进行训练和学习。大数据提供了海量的信息,可以用于训练机器学习

    2024年02月12日
    浏览(62)
  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之六 简单图像倾斜校正处理效果

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之六 简单图像倾斜校正处理效果 一、简单介绍 二、简单图像倾斜校正处理效果实现原理 三、简单图像倾斜校正处理效果案例实现简单步骤 四、注意事项 Python是一种跨平台的计算机程序设计语言。是一种面向对

    2024年04月13日
    浏览(69)
  • Opencv实战——图像拼接

      图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,接可以看做是场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图像稳

    2024年02月02日
    浏览(45)
  • OpenCV实战之三 | 基于OpenCV实现图像校正

    前言 在机器视觉中,对于图像存在ROI区域倾斜现象,我们需要将其校正为正确的角度视角,方便下一步的布局分析与文字识别,通过透视变换可以取得比较好的裁剪效果。 ⭐ 基于轮廓提取和透射变换的矫正算法更适用于 车牌 、 身份证 、 人民币 、 书本 、 发票 一类矩形形

    2024年02月03日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包