经典文献阅读之--Evaluation of Lidar-based 3D SLAM algorithms (激光SLAM性能比较)

这篇具有很好参考价值的文章主要介绍了经典文献阅读之--Evaluation of Lidar-based 3D SLAM algorithms (激光SLAM性能比较)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 简介

我们在日常使用激光SLAM算法的时候,常常会发现现有的算法只会和一些比较经典或者前作去进行比较,很多时候我们更希望对主流的激光SLAM方法进行性能比较。之前作者转载过一篇文章《常见不同3D激光SLAM方案对比》。但是对比的算法有限。现在瑞典Lule科技大学评估9种最常用的激光SLAM方法。我们下面主要来看一下性能对比部分的内容。

1. 总览所有激光slam

所有SLAM方法,所需硬件及其特性均在表1中总结。接下来的步骤是在SLAM方法上运行记录的数据。
经典文献阅读之--Evaluation of Lidar-based 3D SLAM algorithms (激光SLAM性能比较)

2. 对轨迹的评估和比较

通过地下隧道收集的数据集在缺乏特征、重复性和狭窄尺寸方面对基于激光雷达的SLAM算法构成了挑战,而两个闭环分支还可以评估方法的闭环性能。所有SLAM方法都经过了精心调整,但根据多次评估,我们得出结论:VLP16 Lite的视场不足以在垂直维度上捕捉足够的数据,这导致z轴的不确定性很高,即使使用IMU也无法弥补,如图3所示。
经典文献阅读之--Evaluation of Lidar-based 3D SLAM algorithms (激光SLAM性能比较)

图3. 所有方法z坐标估计精度文章来源地址https://www.toymoban.com/news/detail-430461.html

…详情请参照古月居

到了这里,关于经典文献阅读之--Evaluation of Lidar-based 3D SLAM algorithms (激光SLAM性能比较)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 经典文献阅读之--VoxFormer(基于Transformer的3D语义场景补全)

    之前了解了很多BEV的相关操作,但是基本上要么是激光和视觉结合,要么是纯视觉完成的2D激光投影这两种,而那种3D Occupancy方法可以利用栅格的方法完成纯视觉占据栅格的生成。《VoxFormer: Sparse Voxel Transformer for Camera-based 3D Semantic Scene Completion》就是这种方法对于被遮挡的物

    2024年01月23日
    浏览(51)
  • [arxiv论文阅读] LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR Understanding

    Yang, S., Liu, J., Zhang, R., Pan, M., Guo, Z., Li, X., Chen, Z., Gao, P., Guo, Y., Zhang, S. (2023). LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR Understanding. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/2312.14074 最近,大型语言模型(LLMs)和多模态大型语言模型(MLLMs)在 指令跟随 和 2D图像理解

    2024年02月02日
    浏览(64)
  • 经典文献阅读之--Gaussian Splatting SLAM(单目3D高斯溅射重建)

    3D GS在NeRF领域已经掀起了一股浪潮,然后又很快席卷到了SLAM领域,最近已经看到很多3D GS和SLAM结合的开源工作了。将为大家分享帝国理工学院戴森机器人实验最新开源的方案《Gaussian Splatting SLAM》,这也是第一个将3D GS应用到增量3D重建的工作,速度为3 FPS。要想实时从摄像头

    2024年03月10日
    浏览(56)
  • On Evaluation of Embodied Navigation Agents 论文阅读

    题目 :On Evaluation of Embodied Navigation Agents 作者 :Peter Anderson,Angel Chang 来源 :arXiv 时间 :2018 过去两年,导航方面的创造性工作激增。这种创造性的输出产生了大量有时不兼容的任务定义和评估协议。为了协调该领域正在进行和未来的研究,我们召集了一个工作组来研究导航

    2024年02月14日
    浏览(51)
  • 【论文阅读】An Evaluation of Concurrency Control with One Thousand Cores

    Staring into the Abyss: An Evaluation of Concurrency Control with One Thousand Cores 随着多核处理器的发展,一个芯片可能有几十乃至上百个core。在数百个线程并行运行的情况下,协调对数据的竞争访问的复杂性可能会减少增加的核心数所带来的收益。探索当前DBMS的设计对于未来超多核数的

    2024年02月08日
    浏览(41)
  • 经典文献阅读之--PCAccumulation(动态三维场景构建)

    多波束激光雷达传感器,常用于自动驾驶汽车和移动机器人,获取三维范围扫描序列(“帧”)。由于角度扫描分辨率有限和遮挡,每帧只稀疏地覆盖场景。稀疏性限制了下游过程的性能,如语义分割或表面重建。幸运的是,当传感器移动时,从不同的视点捕获帧。这提供了

    2024年02月03日
    浏览(40)
  • 经典文献阅读之--VoxelMap(体素激光里程计)

    作为激光里程计,常用的方法一般是特征点法或者体素法,最近Mars实验室发表了一篇文章《Efficient and Probabilistic Adaptive Voxel Mapping for Accurate Online LiDAR Odometry》,同时还开源了代码在Github上。文中为雷达里程计提出了一种高效的概率自适应体素建图方法。地图是体素的集合,

    2024年02月16日
    浏览(40)
  • 经典文献阅读之--STD(激光SLAM回环检测算法)

    各位也知道,我们在之前的博客中,介绍了很多回环的方法,比如Scan Context,Lris, BoW3D等方法。之前作者也在《重定位解析与思考》一文中,给到了一些回环检测算法的介绍。最近林博新开源了一个回环检测算法《STD: A Stable Triangle Descriptor for 3D place recognition》。我们从小乌坞

    2024年02月03日
    浏览(42)
  • 经典文献阅读之--PL-SLAM(点线SLAM)

    之前作者基本都在围绕着特征点提取的路径在学习,最近看到了最近点云PCL推送的《Structure PLP-SLAM: Efficient Sparse Mapping and Localization using Point, Line and Plane for Monocular, RGB-D and Stereo Cameras》。这个工作是基于OpenVSLAM架构的,但是由于OpenVSLAM被认为侵权,所以作者想从PL-SLAM开始,学

    2024年02月11日
    浏览(42)
  • [论文阅读]PillarNeXt——基于LiDAR点云的3D目标检测网络设计

    PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds 基于LiDAR点云的3D目标检测网络设计 论文网址:PillarNeXt 代码:PillarNeXt 这篇论文\\\"PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds\\\"重新思考了用于激光雷达点云3D目标检测的网络设计。主要的贡献

    2024年02月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包