Pandas 筛选数据的 8 个神操作

这篇具有很好参考价值的文章主要介绍了Pandas 筛选数据的 8 个神操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

日常用Python做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。

今天我给大家总结了日常查询和筛选常用的种骚操作,供各位学习参考。本文采用sklearnboston数据举例介绍。喜欢本文记得收藏、关注、点赞。

【注】完整代码、数据资料、文末提供技术交流群

from sklearn import datasets
import pandas as pd

boston = datasets.load_boston()
df = pd.DataFrame(boston.data, columns=boston.feature_names)

Pandas 筛选数据的 8 个神操作

1. []

第一种是最快捷方便的,直接在dataframe的[]中写筛选的条件或者组合条件。比如下面,想要筛选出大于NOX这变量平均值的所有数据,然后按NOX降序排序。

df[df['NOX']>df['NOX'].mean()].sort_values(by='NOX',ascending=False).head()

Pandas 筛选数据的 8 个神操作

当然,也可以使用组合条件,条件之间使用逻辑符号& |等。比如下面这个例子除了上面条件外再加上且条件CHAS为1,注意逻辑符号分开的条件要用()隔开。

df[(df['NOX']>df['NOX'].mean())& (df['CHAS'] ==1)].sort_values(by='NOX',ascending=False).head()

Pandas 筛选数据的 8 个神操作

2. loc/iloc

[]之外,loc/iloc应该是最常用的两种查询方法了。loc按标签值(列名和行索引取值)访问,iloc按数字索引访问,均支持单值访问或切片查询。除了可以像[]按条件筛选数据以外,loc还可以指定返回的列变量,从行和列两个维度筛选。

比如下面这个例子,按条件筛选出数据,并筛选出指定变量,然后赋值。

df.loc[(df['NOX']>df['NOX'].mean()),['CHAS']] = 2

Pandas 筛选数据的 8 个神操作

3. isin

上面我们筛选条件< > == !=都是个范围,但很多时候是需要锁定某些具体的值的,这时候就需要isin了。比如我们要限定NOX取值只能为0.538,0.713,0.437中时。

df.loc[df['NOX'].isin([0.538,0.713,0.437]),:].sample(5)

Pandas 筛选数据的 8 个神操作

当然,也可以做取反操作,在筛选条件前加~符号即可。

df.loc[~df['NOX'].isin([0.538,0.713,0.437]),:].sample(5)

Pandas 筛选数据的 8 个神操作

4. str.contains

上面的举例都是数值大小比较的筛选条件,除数值以外当然也有字符串的查询需求pandas里实现字符串的模糊筛选,可以用.str.contains()来实现,有点像在SQL语句里用的是like

下面利用titanic的数据举例,筛选出人名中包含Mrs或者Lily的数据,|或逻辑符号在引号内。

train.loc[train['Name'].str.contains('Mrs|Lily'),:].head()

Pandas 筛选数据的 8 个神操作

.str.contains()中还可以设置正则化筛选逻辑。

  • case=True:使用case指定区分大小写

  • na=True:就表示把有NAN的转换为布尔值True

  • flags=re.IGNORECASE:标志传递到re模块,例如re.IGNORECASE

  • regex=True:regex :如果为True,则假定第一个字符串是正则表达式,否则还是字符串

5. where/mask

在SQL里,我们知道where的功能是要把满足条件的筛选出来。pandas中where也是筛选,但用法稍有不同。

where接受的条件需要是布尔类型的,如果不满足匹配条件,就被赋值为默认的NaN或其他指定值。举例如下,将Sexmale当作筛选条件,cond就是一列布尔型的Series,非male的值就都被赋值为默认的NaN空值了。

cond = train['Sex'] == 'male'
train['Sex'].where(cond, inplace=True)
train.head()

Pandas 筛选数据的 8 个神操作

也可以用other赋给指定值。

cond = train['Sex'] == 'male'
train['Sex'].where(cond, other='FEMALE', inplace=True)

Pandas 筛选数据的 8 个神操作

甚至还可以写组合条件。

train['quality'] = ''
traincond1 = train['Sex'] == 'male'
cond2 = train['Age'] > 25

train['quality'].where(cond1 & cond2, other='低质量男性', inplace=True)

Pandas 筛选数据的 8 个神操作

maskwhere是一对操作,与where正好反过来。

train['quality'].mask(cond1 & cond2, other='低质量男性', inplace=True)

Pandas 筛选数据的 8 个神操作

6. query

这是一种非常优雅的筛选数据方式。所有的筛选操作都在''之内完成。

# 常用方式
train[train.Age > 25]
# query方式
train.query('Age > 25')

上面的两种方式效果上是一样的。再比如复杂点的,加入上面的str.contains用法的组合条件,注意条件里有''时,两边要用""包住。

train.query("Name.str.contains('William') & Age > 25")

Pandas 筛选数据的 8 个神操作

query里还可以通过@来设定变量。

name = 'William'
train.query("Name.str.contains(@name)")

7. filter

filter是另外一个独特的筛选功能。filter不筛选具体数据,而是筛选特定的行或列。它支持三种筛选方式:

  • items:固定列名

  • regex:正则表达式

  • like:以及模糊查询

  • axis:控制是行index或列columns的查询

下面举例介绍下。

train.filter(items=['Age', 'Sex'])

Pandas 筛选数据的 8 个神操作

train.filter(regex='S', axis=1) # 列名包含S的

Pandas 筛选数据的 8 个神操作

train.filter(like='2', axis=0) # 索引中有2的

Pandas 筛选数据的 8 个神操作

train.filter(regex='^2', axis=0).filter(like='S', axis=1)

Pandas 筛选数据的 8 个神操作

8. any/all

any方法意思是,如果至少有一个值为True结果便为Trueall需要所有值为True结果才为True,比如下面这样。

>> train['Cabin'].all()
>> False
>> train['Cabin'].any()
>> True

anyall一般是需要和其它操作配合使用的,比如查看每列的空值情况。

train.isnull().any(axis=0)

Pandas 筛选数据的 8 个神操作

再比如查看含有空值的行数。

>>> train.isnull().any(axis=1).sum()
>>> 708

原创不易,欢迎点赞、留言、分享,支持我继续写下去。

推荐文章

  • 李宏毅《机器学习》国语课程(2022)来了

  • 有人把吴恩达老师的机器学习和深度学习做成了中文版

  • 上瘾了,最近又给公司撸了一个可视化大屏(附源码)

  • 如此优雅,4款 Python 自动数据分析神器真香啊

  • 梳理半月有余,精心准备了17张知识思维导图,这次要讲清统计学

  • 香的很,整理了20份可视化大屏模板

技术交流

欢迎转载、收藏、有所收获点赞支持一下!

Pandas 筛选数据的 8 个神操作

目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:dkl88191,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

Pandas 筛选数据的 8 个神操作文章来源地址https://www.toymoban.com/news/detail-430773.html

到了这里,关于Pandas 筛选数据的 8 个神操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python 教学 | Pandas 妙不可言的条件数据筛选

    目录 Part 1  前言 Part 2  Excel 的数据筛选与分布统计 Part 3  Pandas 条件数据筛选 1、条件数据筛选的不同维度 (1) 比较数据值 (2) 是否为空值 (3) 文本内容筛选 (4) 数据值长度 (5) 日期筛选 (6) 其他 2、复合条件筛选 Part 4  总结 Part 5  Python教程 在 Python 中,第三方库 Pandas 是数据清

    2024年02月10日
    浏览(40)
  • 筛选符合条件的数据行(Python Pandas 数据框中基于条件的行选择)

    筛选符合条件的数据行(Python Pandas 数据框中基于条件的行选择) 在处理数据的过程中,有时需要筛选出数据框中符合特定条件的行,以便对这些行进行进一步的处理或者分析。Python Pandas 库提供了多种方式来实现基于条件的行选择。 下面我们将演示如何使用 Pandas 实现基于

    2024年02月12日
    浏览(42)
  • pandas--DataFrame--数据切片/筛选/取值

    2024年02月13日
    浏览(56)
  • 别再低效筛选数据了!试试pandas query函数

    数据过滤在数据分析过程中具有极其重要的地位,因为在真实世界的数据集中,往往存在重复、缺失或异常的数据。 pandas 提供的数据过滤功能可以帮助我们轻松地识别和处理这些问题数据,从而确保数据的质量和准确性。 今天介绍的 query 函数,为我们提供了强大灵活的数据

    2024年03月09日
    浏览(44)
  • Pandas.DataFrame.loc[ ] 筛选数据-标签法 详解 含代码 含测试数据集 随Pandas版本持续更新

    关于Pandas版本: 本文基于 pandas2.2.0 编写。 关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。 传送门: Pandas API参考目录 传送门: Pandas 版本更新及新特性 传送门: Pandas 由浅入深系列教程 Pandas.DataFrame.loc[] 方法用于通过 索引、列名 筛选 DataF

    2024年01月19日
    浏览(39)
  • Python之Pandas的常用技能【写入数据】

    1、背景: 最近在工作中遇到越来越多的的使用pandas或者python来处里写入操作,尤其是对excel文件或者csv文件的操作更是常见,这里将写入操作总结如下,方便记忆,也分享给大家,希望对阅读者能够有所帮助 2、pandas写入数据的各种场景使用详解 2.1、df.to_excel()参数详解 2.2

    2024年01月17日
    浏览(47)
  • Python实用技巧:Pandas--DataFrame--筛选和删除含特定值的行与列

    Python实用技巧:Pandas–DataFrame–筛选和删除含特定值的行与列 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程 👈 希望得到您的订阅和支持~ 💡 创作高质量博文,分享更多关于深度学习、PyT

    2024年04月13日
    浏览(44)
  • python-数据分析-numpy、pandas、matplotlib的常用方法

    输出方式不同 里面包含的元素类型 使用 索引/切片 访问ndarray元素 切片 左闭右开 np.array(list) np.arange() np.random.randn() - - - 服从标准正态分布- - - 数学期望 μ - - - 标准方差 s 使用matplotlib.pyplot模块验证标准正态分布 np.random.randint(起始数,终止数(行,列)) 数据分析 - - - 数据清洗

    2024年02月10日
    浏览(99)
  • Python 之 Pandas DataFrame 数据类型的简介、创建的列操作

    DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一,可以这么说,掌握了 DataFrame 的用法,你就拥有了学习数据分析的基本能力。 DataFrame 是一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表

    2024年02月06日
    浏览(41)
  • 【100天精通Python】Day59:Python 数据分析_Pandas高级功能-多层索引创建访问切片和重塑操作,pandas自定义函数和映射功能

    目录 1 多层索引(MultiIndex) 1.1 创建多层索引 1.1.1 从元组创建多层索引

    2024年02月09日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包