离散数学_九章:关系(3)

这篇具有很好参考价值的文章主要介绍了离散数学_九章:关系(3)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本节及本章的剩余部分研究的所有关系均为二元关系,因此,在这些内容中出现的“关系〞一词都表示二元关系

1、用集合表示关系

关系是序偶的集合,所以描述集合能用的方法一般都可以描述关系,比如枚举满足关系的所有序偶,比如叙述满足关系的性质。

前面的例子都是用集合表示关系,这里不赘述

2、用矩阵表示关系

矩阵表示关系

有限集之间的关系可用0-1 矩阵表示:

假设 R 是从 A = { a1, a2,…,am } 到 B = { b1, b2,…,bn } 的关系,则A×B上的所有关系可以用一个 m×n的长方形 0-1 矩阵 来表示。

关系R由矩阵 MR = [ mij ] 表示,其中
离散数学_九章:关系(3)
当 ai 与 bj 相关时,表示 R 的 0-1 矩阵的 (i, j) 项是1,如果ai 与 bj 无关系,则是0

📘例1:
假设 A = { 1, 2, 3 },B = { 1, 2 }。令 R 为 A 到 B 的关系,如果 a∈A,b∈B 且 a > b,则 R 包含 (a, b)。表示 R 的矩阵是什么(假设元素的顺序与递增的数值顺序相同)?

由题意得,R = { (2, 1), (3, 1), (3, 2) },因此矩阵为:
离散数学_九章:关系(3)

📘例2:
设 A = { a1, a2, a3 },B = { b1, b2, b3, b4, b5 }。哪些有序对在下面的矩阵所表示的关系 R 中?
离散数学_九章:关系(3)

因为 R 是由 mij = 1 的有序对 (ai, bj) 构成的,所以
R = { (a1, b2), (a2, b1), (a2, b3), (a2, b4), (a3, b1), (a3, b3), (a3, b5) }

⭐集合上的关系矩阵

表示定义在一个集合上的关系的矩阵是一个方阵,可以用这个矩阵确定关系是否有某种性质

R 自反时

R 是自反的,当且仅当 MR 的主对角线上的所有元素都等于1
注意:非主对角线上的元素可以是 0 或 1

离散数学_九章:关系(3)

R 对称时

R 是对称关系,当且仅当 若mij = 1 则 mji = 1

换句话说:R 是对称关系,当且仅当 MR = (MR)T

(沿主对角线对称)

R 反对称时

R 是反对称关系,当且仅当 i ≠ j 时,mij = 0 或 mji = 0(至少有一个得是0)
离散数学_九章:关系(3)
📘例:
假设集合上关系 R 由下图矩阵表示,R 是自反的、对称的和反对称的吗?
离散数学_九章:关系(3)
判断自反:因为这个矩阵中所有的对角线元素都等于1,所以 R 是自反的。
判断对称:由于 MR 是对称的,所以 R 是对称的。
判断反对称:因为 m1,2 和 m2,1 都是1,所以 R 不是反对称的

⭐确定关系合成的矩阵

确定关系合成的矩阵:已知两个关系的关系矩阵,求这两个关系矩阵的合成矩阵
离散数学_九章:关系(3)
本质是关系矩阵的布尔积,理解上可以直接把两个矩阵相乘(注意顺序,A×B和B×A不一样),0仍是0,大于等于1的写成1

3、用有向图表示关系

有向图

定义: 一个有向图(directed graph,or digraph)由顶点(或结点)集 V 和边(或弧)集 E 组成,其中边集是 V 中元素的有序对的集合。顶点 a 叫作边 (a, b) 的始点,而顶点 b 叫作这条边的终点。

形如 (a, a) 的边用一条从顶点 a 到自身的弧表示,这种边叫作环(loop)

📘例1:
画出具有顶点 a、b、c 和 d;边 (a, b)、(a, d)、(b, b)、(b, d)、(c, a)、(c, b) 和 (d, b) 的有向图

离散数学_九章:关系(3)

📘例2:
有向图中所表示的关系 R 中的有序对是什么?
离散数学_九章:关系(3)
关系中的有序对 (x, y) 是:
R = { (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3) }

⭐从有向图中 确定关系具有的属性

自反性

图中的所有顶点必须都有环

对称性

如果 (x, y) 是一条边,那么 (y, x) 也是

反对称性

如果 (x, y) 为边( x ≠ y ),则 (y, x) 不是边( x ≠ y 时, (x, y) 和 (y, x) 最多出现一个)

按照反对称的原始定义说,如果(x, y) 为边且 (y, x) 为边,那么x = y

传递性

如果 (x, y) 和 (y, z) 是边,那么 (x, z) 也是边

📘例1:
从有向图中确定关系具有哪些属性 ?

离散数学_九章:关系(3)
自反的?不是,并非每个顶点都有一个环
对称的?是的,从一个顶点到另一个顶点没有边
反对称的?是的,从一个顶点到另一个顶点没有边
传递的?是的,因为从一个顶点到另一个顶点没有边

📘例2:
从有向图中确定关系具有哪些属性 ?

离散数学_九章:关系(3)
自反的?不是,一个环都莫得
对称的?不是,从 a 到 b 有一个边,但从 b 到 a 没有
反对称的?不是,从 d 到 b 以及从 b 到 d 有边
传递的?不是,从 a 到 c 以及从 c 到 b 有边,但是从 a 到 d 没有

📘例3:
从有向图中确定关系具有哪些属性 ?

离散数学_九章:关系(3)
自反的?不是,没有环
对称的?不是,比如从 c 到 a 就没有边
反对称的?是的,每当从一个顶点到另一个顶点存在边时,没有一个有 返回路径
传递的?不是,从 a 到 b 没有边

📘例4:
从有向图中确定关系具有哪些属性 ?
离散数学_九章:关系(3)

自反的?不是,没有环
对称的?不是,例如从 d 到 a 不存在边
反对称的?是的,无论哪条从一个顶点到另一个顶点的边,都没有返回路径
传递的?是的,没有第一个边结束于第二个边开始的顶点的两条边文章来源地址https://www.toymoban.com/news/detail-431002.html

到了这里,关于离散数学_九章:关系(3)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 离散数学 --- 二元关系 --- 关系的运算

      进行关系A和关系B进行关系的复合运算的前提是关系A的后域是关系B的前域,且最终得到的复合关系C的前域是关系A的前域,后域是关系B的后域(且这个前域值在关系A中对应的后域值与这个后域值在关系B中对应的前域值相等) 1.关系的复合运算必然涉及到三个集合,两个集

    2024年02月02日
    浏览(47)
  • 离散数学之矩阵关系运算

    矩阵关系运算前提: (1)第一个矩阵的列数等于第二个矩阵的行数。 (2)两个矩阵的元素均是0或1。 例如:A关系运算B得到C   原理:C11=(A11∧B11)∨(A12∧B21) C12=(A11∧B12)∨(A12∧B22)...... 就是把矩阵乘法中各个元素的乘法变成合取,原来乘法之后进行的相加改为合取后的析取。    

    2024年02月12日
    浏览(42)
  • 离散数学(十二):关系的幂运算与关系的性质

    1)幂运算的定义  2)幂运算的求法   幂运算有两种求法,基于矩阵的方法和基于关系图的方法。我们之前学过关系的表示方法有三种:集合、矩阵、关系图。那么同样,这些方式也可以运用于关系的计算中。 需要的注意的是,基于关系图的运算是具有物理意义的,以R2为例

    2024年02月08日
    浏览(43)
  • 【Educoder离散数学实训】关系基础

    题有点多,能聊的不多。有些题还是比较有价值的 就单独说几个题,代码放在最后。所有函数都改成自己写的了,没准比答案给的好读一点? T1 求给定集合的对角线关系(diagonal relation) 我觉得如果卡住的话,第一关会是一个大坎。 因为我们并不知道他到底在说啥,于是我

    2024年02月07日
    浏览(52)
  • 离散数学 --- 特殊关系 --- 偏序关系,哈斯图和特殊元素以及其它次序关系

    1.当我们用 ≤ 符号来表示偏序关系的时候,这个符号就不再局限于它本来的含义了,此时的它表示的是元素之间的先后顺序,如下图:   1.这里的可比的意思是可比较元素在偏序关系中的先后顺序   1.哈斯图其实就是简化版的偏序关系的关系图 2.什么叫做由于传递关系必须出

    2024年01月15日
    浏览(40)
  • 【离散数学】Python语言实现关系性质的判断

    实验内容: 用矩阵表示二元关系;通过矩阵的特征判断二元关系所具有的性质;运用二维数组实现矩阵的输入,然后判断自反性,反自反性,对称性,反对称性,传递性 先复习一下相关的基础知识:  1.    判断自反性:矩阵主对角线元素全为1 2.    判断反自反性:矩阵主

    2024年02月04日
    浏览(42)
  • 【Java实现】离散数学计算 关系的幂运算

    (前排提示,代码内容在文章中间,末尾是闲聊)  离散数学在在“右复合”的基础上提出了“幂运算”的概念。 设R为A上的关系,n为自然数,则R的n次幂如下: (1)为恒等关系。 (2) =o。  咳咳,用上面两个定义可以干很多事情,比如我们知道任意集合上关系的0次幂都

    2024年02月11日
    浏览(38)
  • 【离散数学】二元关系中的对称与反对称

    对称与反对称:  注: 存在既是对称也是反对称的关系,也存在既非 对称也非反对称的关系 例题1:  例题2:          

    2024年02月16日
    浏览(42)
  • 离散数学-集合论-关系的概念、表示和运算(7)

    函数是x 到y 的映射,这种映射反就是一种关系。因为定义域x 是一个集合、值域y 也是一个集合所以函数就是一个x, y 有序对的集合。因此,我们可以通过二元关系来定义函数的概念,利用有序对的集合来表示函数。 1.1 有序对 定义: 由两个元素 x 和 y,按照一定的顺序组成的

    2024年02月06日
    浏览(47)
  • 【头歌educoder】离散数学实训参考-第二章-关系-part1-关系基础

    目录  第一关:求给定集合的对角线关系(Diagonal Relation)  第二关:关系的合成  第三关:关系的幂运算  第四关:关系的并运算  第五关:转换成关系矩阵  第六关:自反关系的判断  第七关:反自反关系的判断  第八关:对称关系的判断  第九关:非对称关系的判断  第十

    2024年02月07日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包