【Python数学建模常用算法代码——蒙特卡洛模型】

这篇具有很好参考价值的文章主要介绍了【Python数学建模常用算法代码——蒙特卡洛模型】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

蒙特卡洛方法的理论支撑其实是概率论或统计学中的大数定律。基本原理简单描述是先大量模拟,然后计算一个事件发生的次数,再通过这个发生次数除以总模拟次数,得到想要的结果。下面我们以三个经典的小实验来学习下蒙特卡洛算法思想。

例一:计算圆周率pi(π)值

实验原理

在正方形内部有一个相切的圆,圆面积/正方形面积之比是(PixRxR)/(2Rx2R)= Pi/4。在这个正方形内随机产生n个点,假设点落在圆内的概率为P,那么P=圆面积/正方形面积,则P= Pi/4。如何计算点落在圆内的概率P?可以计算点与中心点的距离,判断是否落在圆的内部,若这些点均匀分布,用M表示落到圆内投点数 , N表示总的投点数,则圆周率Pi=4P=4xM/N。

实验步骤

(1)将圆心设在原点(0,0),以R为半径形成圆,则圆面积为PixRxR
(2)将该圆外接正方形, 坐标为(-R,-R)(R,-R)(R, R)(-R,R),则该正方形面积为R*R
(3)随即取点(X,Y),使得-R <=X<=R并且-R <=Y<=R,即点在正方形内
(4)通过公式 XxX+YxY<= RxR判断点是否在圆周内(直角三角形边长公式)。
(5)设所有点(也就是实验次数)的个数为N,落在圆内的点(满足步骤4的点)的个数为M,则P=M/N,于是Pi=4xM/N。
(6)运行结果为3.143052

def cal_pai_mc(n=1000000):
 r = 1.0
 a, b = (0.0, 0.0)
 x_neg, x_pos = a - r, a + r
 y_neg, y_pos = b - r, b + r
 m = 0
 for i in range(0, n+1):
 x = random.uniform(x_neg, x_pos)
 y = random.uniform(y_neg, y_pos)
 if x**2 + y**2 <= 1.0:
 m += 1
 return (m / float(n)) * 4

例二:计算函数定积分值

实验原理

若要求函数f(x)从a到b的定积分,我们可以用一个比较容易算得面积的矩型包围在函数的积分区间上(假设其面积为Area),定积分值其实就是求曲线下方的面积。随机地向这个矩形框里面投点,统计落在函数f(x)下方的点数量占所有点数量的比例为P,那么就可以据此估算出函数f(x)从a到b的定积分为Area×P。此处我们将a和b设为0和1,函数f(x)=x2。

运行结果
0.333749

def cal_integral_mc(n = 1000000):
 x_min, x_max = 0.0, 1.0
 y_min, y_max = 0.0, 1.0
 m = 0
 for i in range(0, n+1):
 x = random.uniform(x_min, x_max)
 y = random.uniform(y_min, y_max)
 # x*x > y 表示该点位于曲线的下面。
 if x*x > y:
 m += 1
 #所求的积分值即为曲线下方的面积与正方形面积的比
 return m / float(n)

例三:计算函数极值,可避免陷入局部极值

实验原理
极值是“极大值” 和 “极小值”的统称。如果一个函数在某点的一个邻域内处处都有确定的值,函数在该点的值大于或等于在该点附近任何其他点的函数值,则称函数在该点的值为函数的“极大值”。如果函数在该点的值小于或等于在该点附近任何其他点的函数值,则称函数在该点 的值为函数的“极小值”。此处在区间[-2,2]上随机生成一个数,求出其对应的y,找出其中最大值认为是函数在[-2,2]上的极大值。

运行结果
极大值185.1204262706596, 极大值点为1.5144491499169481文章来源地址https://www.toymoban.com/news/detail-431272.html

def cal_extremum_mc(n = 1000000):
 y_max = 0.0
 x_min, x_max = -2.0, 2.0
 y = lambda x:200*np.sin(x)*np.exp(-0.05*x)#匿名函数
 for i in range(0, n+1):
 x0 = random.uniform(x_min, x_max)
 if y(x0) > y_max:
 y_max = y(x0)
 x_max = x0
 return y_max, x_max

到了这里,关于【Python数学建模常用算法代码——蒙特卡洛模型】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python机器学习经典算法代码示例及思维导图(数学建模必备)

    最近几天学习了机器学习经典算法,通过此次学习入门了机器学习,并将经典算法的代码实现并记录下来,方便后续查找与使用。 这次记录主要分为两部分:第一部分是机器学习思维导图,以框架的形式描述机器学习开发流程,并附有相关的具体python库,做索引使用;第二部

    2024年02月12日
    浏览(39)
  • 数学建模|通过模拟退火算法求解供货与选址问题:问题二(python代码实现)

    今天继续用模拟退火算法供货与选址问题的问题二,如果还没看过问题一的可以看我之前的博客 数学建模|通过模拟退火算法求解供应与选址问题:问题一(python代码实现)-CSDN博客 这里还是把题目放上来(题目来自数学建模老哥的视频): 那么我们可以分析一下,第一问和

    2024年01月16日
    浏览(57)
  • 数学建模学习(2):数学建模各类常用的算法全解析

    常见的评价算法  1.层次分析法 基本思想         是定性与定量相结合的多准则决策、评价方法。将决策的有关元素分解成 目标层、准则层和方案层 ,并通过人们的 判断对决策方案的 优劣进行排序 ,在此基础上进行定性和定量分析。它把人的思维过程层次化、数量化,

    2024年02月09日
    浏览(53)
  • 数学建模十大经典算法和常用算法

    1、蒙特卡罗算法: 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。 2、数据拟合、参数估计、插值等数据处理算法: 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于算法,通常使用Matlab作为

    2024年02月07日
    浏览(46)
  • 数学建模常用算法—多目标规划

    前面我们已经学习了线性规划及非线性规划,接下来带大家一起学习多目标规划模型。 目录 模型的含义 求解思路 建立目标规划的条件 目标规划的目标函数 目标规划的模型应用 模型的建立 目标规划的一般数学模型 模型示例与求解 多目标规划是数学规划的一个分支。研究多

    2023年04月12日
    浏览(53)
  • 数学建模常用算法—模糊综合评价

    目录 模型的含义 模型的数学概念 模型的建立与求解 matlab代码实现 今天给大家讲解一下国赛中常用到的评价模型,模糊综合评价法。 模糊综合评价法是一种基于模糊数学的综合评价方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对

    2023年04月12日
    浏览(58)
  • 数学建模常用算法—马尔可夫预测

    今天数模君带大家学习一下数学建模中的预测算法之马尔科夫预测。 目录 模型的含义 实例分析 马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地理预测

    2024年02月09日
    浏览(50)
  • 数学建模-32种常用算法汇总

    全国大学生数学建模竞赛(以下简称\\\"数学建模竞赛\\\")是由中国高等教育学会主办,旨在促进大学生对数学和相关学科的学习和研究,培养创新精神和综合素质的全国性大学生学科竞赛活动。该竞赛一般在每年的十月份举办,是目前国内规模最大、影响力最广的大学生学科竞

    2024年02月13日
    浏览(38)
  • 数学建模常用算法之Logistic回归

    一元线性回归 最小二乘法 设: 即可求得 其他方法 linearModel.fit函数 regress函数 变量解释 一元非线性回归 主要是解决回归方程中的参数估计问题,即fitnlm函数的使用 参考资料:传送门 对数形式估计 指数形式估计 根据xxx.Coefficients.Estimate得到参数 观察是否具有线性关系,使用

    2024年02月13日
    浏览(42)
  • 数学建模常用方法及MATLAB代码

    我们通常使用二分法计算非线性方程或者超越方程近似根,MATLAB代码为: π定理的解题步骤 : (1)确定关系式:根据对所研究的现象的认识,确定影响这个现象的各个物理量及其关系式: (2)确定基本量:从n个物理量中选取所包含的m个基本物理量作为基本量纲的代表,一般取m=

    2024年02月03日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包