机器学习——K-Means算法优化(一)代价函数

这篇具有很好参考价值的文章主要介绍了机器学习——K-Means算法优化(一)代价函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习——K-Means算法优化(一)代价函数


在K-Means算法中,对K个质心的选择,容易陷入局部最小值,从而每次聚类得到不同的结果。

一、K-Means算法(代价函数)

使用多次的随机初始化,并计算每一次建模得到的代价函数值,选取最小的代价函数值作为聚类结果,代价函数公式如下
J ( c ( 1 ) , … , c ( m ) , μ 1 , … , μ K ) = 1 m ∑ i = 1 m ∣ ∣ x ( i ) − μ c ( i ) ∣ ∣ 2 J(c^{(1)},\dots,c^{(m)},\mu_{1},\dots,\mu_{K})=\frac{1}{m}\sum^m_{i=1} {||x^{(i)}-\mu_c^{(i)}|| } ^2 J(c(1),,c(m),μ1,,μK)=m1i=1m∣∣x(i)μc(i)∣∣2
现有数据如下

1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539

根据观察,这种数据可以分为4类,即直角坐标系的四个象限。

代码如下:首先还是写一个欧氏距离并初始化质心,最后定义一个kmeans函数。

详情请看之前的文章:

二、代码部分

# 计算距离 
def euclDistance(vector1, vector2):  
    return np.sqrt(sum((vector2 - vector1)**2))
  
# 初始化质心
def initCentroids(data, k):  
    numSamples, dim = data.shape
    # k个质心,列数跟样本的列数一样
    centroids = np.zeros((k, dim))  
    # 随机选出k个质心
    for i in range(k):  
        # 随机选取一个样本的索引
        index = int(np.random.uniform(0, numSamples))  
        # 作为初始化的质心
        centroids[i, :] = data[index, :]  
    return centroids  
  
# 传入数据集和k的值
def kmeans(data, k):  
    # 计算样本个数
    numSamples = data.shape[0]   
    # 样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
    clusterData = np.array(np.zeros((numSamples, 2)))  
    # 决定质心是否要改变的变量
    clusterChanged = True  
  
    # 初始化质心  
    centroids = initCentroids(data, k)  
  
    while clusterChanged:  
        clusterChanged = False  
        # 循环每一个样本 
        for i in range(numSamples):  
            # 最小距离
            minDist  = 100000.0  
            # 定义样本所属的簇
            minIndex = 0  
            # 循环计算每一个质心与该样本的距离
            for j in range(k):  
                # 循环每一个质心和样本,计算距离
                distance = euclDistance(centroids[j, :], data[i, :])  
                # 如果计算的距离小于最小距离,则更新最小距离
                if distance < minDist:  
                    minDist  = distance  
                    # 更新样本所属的簇
                    minIndex = j  
                    # 更新最小距离
                    clusterData[i, 1] = distance
              
            # 如果样本的所属的簇发生了变化
            if clusterData[i, 0] != minIndex:  
                # 质心要重新计算
                clusterChanged = True
                # 更新样本的簇
                clusterData[i, 0] = minIndex
  
        # 更新质心
        for j in range(k):  
            # 获取第j个簇所有的样本所在的索引
            cluster_index = np.nonzero(clusterData[:, 0] == j)
            # 第j个簇所有的样本点
            pointsInCluster = data[cluster_index]  
            # 计算质心
            centroids[j, :] = np.mean(pointsInCluster, axis = 0) 
#         showCluster(data, k, centroids, clusterData)
  
    return centroids, clusterData  
  
# 显示结果 
def showCluster(data, k, centroids, clusterData):  
    numSamples, dim = data.shape  
    if dim != 2:  
        print("dimension of your data is not 2!")  
        return 1  
  
    # 用不同颜色形状来表示各个类别
    mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']  
    if k > len(mark):  
        print("Your k is too large!")  
        return 1  
  
    # 画样本点  
    for i in range(numSamples):  
        markIndex = int(clusterData[i, 0])  
        plt.plot(data[i, 0], data[i, 1], mark[markIndex])  
  
    # 用不同颜色形状来表示各个类别
    mark = ['*r', '*b', '*g', '*k', '^b', '+b', 'sb', 'db', '<b', 'pb']  
    # 画质心点 
    for i in range(k):  
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 20)  
  
    plt.show()

随后设置K的值为4,并写一个上述的代价函数来对样本点进行迭代。

# 设置k值
k = 4  

min_loss = 10000
min_loss_centroids = np.array([])
min_loss_clusterData = np.array([])

for i in range(50):
    # centroids 簇的中心点 
    centroids, clusterData = kmeans(data, k)  
    loss = sum(clusterData[:,1])/data.shape[0]
    if loss < min_loss:
        min_loss = loss
        min_loss_centroids = centroids
        min_loss_clusterData = clusterData
         
centroids = min_loss_centroids
clusterData = min_loss_clusterData

# 显示结果
showCluster(data, k, centroids, clusterData)

结果如下:

机器学习——K-Means算法优化(一)代价函数

随后我们将每个簇的作用域标记出来,先写出预测函数

# 做预测
x_test = [0,1]
np.tile(x_test,(k,1))
# 误差
np.tile(x_test,(k,1))-centroids
# 误差平方
(np.tile(x_test,(k,1))-centroids)**2
# 误差平方和
((np.tile(x_test,(k,1))-centroids)**2).sum(axis=1)
# 最小值所在的索引号
np.argmin(((np.tile(x_test,(k,1))-centroids)**2).sum(axis=1))
def predict(datas):
    return np.array([np.argmin(((np.tile(data,(k,1))-centroids)**2).sum(axis=1)) for data in datas])

画出簇的作用域

# 获取数据值所在的范围
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 显示结果
showCluster(data, k, centroids, clusterData)  

机器学习——K-Means算法优化(一)代价函数

最后分成了类似坐标系的四块区域。文章来源地址https://www.toymoban.com/news/detail-431963.html

到了这里,关于机器学习——K-Means算法优化(一)代价函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【人工智能】— 无监督学习、K-means聚类(K-means clustering)、K-means损失函数,目标函数

    无监督学习是指在没有标签的数据上进行学习,即没有监督信号的指导下进行模型训练。在无监督学习中,我们主要关注从无标签数据中学习出数据的低维结构和隐藏的模式。 通过无标签数据,我们可以预测以下内容: 低维结构:通过无监督学习算法如主成分分析(PCA),

    2024年02月10日
    浏览(41)
  • 机器学习之K-means聚类算法

    目录 K-means聚类算法 算法流程 优点 缺点 随机点聚类 人脸聚类 旋转物体聚类 K-means聚类算法是一种无监督的学习方法,通过对样本数据进行分组来发现数据内在的结构。K-means的基本思想是将n个实例分成k个簇,使得同一簇内数据相似度高而不同簇之间数据相似度低。 K-means的

    2024年02月11日
    浏览(43)
  • 机器学习(八) — K-means

    1 definition randomly initialize K cluster centroids μ 1 , μ 2 , ⋯ mu_1, mu_2, cdots μ 1 ​ , μ 2 ​ , ⋯ repeat: assign each point to its closest centroid μ mu μ recompute the centroids(average of the closest point) 2 optimazation objective c ( i ) c^{(i)} c ( i ) = index of cluster to which example x ( i ) x^{(i)} x ( i ) is currently assign

    2024年01月21日
    浏览(48)
  • 机器学习之K-Means(k均值)算法

    K-Means算法又称K均值算法,属于聚类(clustering)算法的一种,是应用最广泛的聚类算法之一。所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,

    2024年02月03日
    浏览(43)
  • 头歌(educoder)机器学习 --- k-means

    2024年02月06日
    浏览(49)
  • 机器学习第十一课--K-Means聚类

    K-Means算法是最经典的聚类算法,几乎所有的聚类分析场景,你都可以使用K-Means,而且在营销场景上,它就是\\\"King\\\",所以不管从事数据分析师甚至是AI工程师,不知道K-Means是”不可原谅“的一件事情。在面试中,面试官也经常问关于K-Means的问题。虽然算法简单,但也有一些需

    2024年02月07日
    浏览(37)
  • 吴恩达471机器学习入门课程3第1周——K-means

    实现 K-means 算法,并将其用于图像压缩。 您将从一个样本数据集开始,帮助您获得 K-means 算法的工作概述 然后,您将使用 K-means 算法进行图像压缩,将出现在图像中的颜色数量减少到仅包括那些在该图像中最常见的颜色。 K-means 算法是一种自动将相似数据点聚合在一起的方

    2024年02月11日
    浏览(40)
  • 机器学习实战:Python基于K均值K-means进行聚类(九)

    1.1 K-means的介绍 K均值( K-means )是一种基于距离度量的聚类算法,其主要思想是将数据集划分为k个不同的簇,每个簇代表一个相似度较高的数据组。该算法通过迭代优化来最小化所有数据点与其所属簇的欧氏距离之和,从而找到最佳的簇划分。 需要区分一下,K-means和KNN是两

    2024年02月16日
    浏览(35)
  • 【机器学习实战】Python基于K均值K-means进行聚类(九)

    1.1 K-means的介绍 K均值( K-means )是一种基于距离度量的聚类算法,其主要思想是将数据集划分为k个不同的簇,每个簇代表一个相似度较高的数据组。该算法通过迭代优化来最小化所有数据点与其所属簇的欧氏距离之和,从而找到最佳的簇划分。 需要区分一下,K-means和KNN是两

    2024年02月06日
    浏览(40)
  • python机器学习——聚类评估方法 & K-Means聚类 & 神经网络模型基础

    1、随机设置K个特征空间内的点作为初始的聚类中心 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值) 4、如果计算得出的新中心点与原中心点一样,那么

    2024年02月12日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包