【机器学习】KNN算法及K值的选取

这篇具有很好参考价值的文章主要介绍了【机器学习】KNN算法及K值的选取。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法K-means有点像(K-means是无监督学习算法),但却是有本质区别的。

KNN的原理就是:当预测一个新的值x的时候,根据它距离最近的K个点是什么类别,来判断x属于哪个类别。

【机器学习】KNN算法及K值的选取

图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用圆圈把它圈起来了),看看哪种类别多一些,比如这个例子中是蓝色三角形多一些,新来的绿色点就归类到蓝三角了。

【机器学习】KNN算法及K值的选取

但是,当K=5的时候,判定就变成不一样了。这次变成红圆多一些,所以新来的绿点被归类成红圆。从这个例子中,我们就能看得出K的取值是很重要的

KNN的两个核心点:K值的选取点之间距离的计算方式

距离计算公式就不多说了,是欧氏距离: d ( x , y ) : = ∑ i = 1 n ( x i − y i ) 2 d(x,y):=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} d(x,y):=i=1n(xiyi)2

(对于高维特征,曼哈顿距离(即p更低)更能避免维度灾难的影响,效果更优。欧几里得距离(次数更高)更能关注大差异较大的特征的情况)

最简单粗暴的就是将预测点与所有点距离进行计算,然后保存并排序,选出前面K个值看看哪些类别比较多。但其实也可以通过一些数据结构来辅助,比如最大堆

如何确定K值?答案是通过网格搜索,交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据),从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的方差,最终找到一个比较合适的K值

【机器学习】KNN算法及K值的选取

有个反直觉的现象,K取值较小时,模型复杂度(容量)高,训练误差会减小,泛化能力减弱;K取值较大时,模型复杂度低,训练误差会增大,泛化能力有一定的提高。原因是K取值小的时候(如k=1),仅用较小的领域中的训练样本进行预测,模型拟合能力比较强,决策就是只要紧跟着最近的训练样本(邻居)的结果。但是,当训练集包含”噪声样本“时,模型也很容易受这些噪声样本的影响(如图 过拟合情况,噪声样本在哪个位置,决策边界就会画到哪),这样会增大"学习"的方差,也就是容易过拟合。这时,多听听其他邻居训练样本的观点就能尽量减少这些噪声的影响。K值取值太大时,情况相反,容易欠拟合。

KNN是一种非参的惰性的算法模型:

非参的意思并不是说这个算法不需要参数,而是意味着这个模型不会对数据做出任何的假设,与之相对的是线性回归(我们总会假设线性回归是一条直线)。也就是说KNN建立的模型结构是根据数据来决定的,这也比较符合现实的情况,毕竟在现实中的情况往往与理论上的假设是不相符的。

此处的非参数似乎不太正确

惰性又是什么意思呢?想想看,同样是分类算法,逻辑回归需要先对数据进行大量训练,最后才会得到一个算法模型。而KNN算法却不需要,它没有明确的训练数据的过程,或者说这个过程很快。

KNN算法优点

  • 算法简单直观,易于应用于回归及多分类任务
  • 对数据没有假设,准确度高,对异常点较不敏感
  • 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此适用于类域的交叉或非线性可分的样本集。

KNN算法缺点文章来源地址https://www.toymoban.com/news/detail-432011.html

  • 计算量大,尤其是样本量、特征数非常多的时候。另外KD树、球树之类的模型建立也需要大量的内存
  • 只与少量的k相邻样本有关,样本不平衡的时候,对稀有类别的预测准确率低
  • 使用懒散学习方法,导致预测时速度比起逻辑回归之类的算法慢。当要预测时,就临时进行 计算处理。需要计算待分样本与训练样本库中每一个样本的相似度,才能求得与 其最近的K个样本进行决策。
  • 与决策树等方法相比,KNN考虑不到不同的特征重要性,各个归一化的特征的影响都是相同的。
  • 相比决策树、逻辑回归模型,KNN模型可解释性弱一些
  • 差异性小,不太适合KNN集成进一步提高性能。

到了这里,关于【机器学习】KNN算法及K值的选取的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习——KNN算法

    机器学习笔记 KNN的算法原理,可以简单如下描述: 一个数据集中存在多个已有标签的样本值,这些样本值共有的n个特征构成了一个多维空间N。当有一个需要预测/分类的样本x出现,我们把这个x放到多维空间n中,找到离其距离最近的k个样本,并将这些样本称为最近邻(nea

    2024年02月06日
    浏览(44)
  • 【机器学习】KNN 算法介绍

    KNN 算法,或者称 k-最近邻算法,是 有监督学习 中的 分类算法 。它可以用于分类或回归问题,但它通常用作分类算法。 KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居。该算法用 K 个最近邻来干什么呢?其实,KNN 的原理就是:当预测一个新样本的类别时, 根据它距离

    2023年04月24日
    浏览(84)
  • 机器学习小结之KNN算法

    ​ KNN (K-Nearest Neighbor)算法是一种最简单,也是一个很实用的机器学习的算法,在《 机器学习实战 》这本书中属于第一个介绍的算法。它属于基于实例的 有监督学习 算法,本身不需要进行训练,不会得到一个概括数据特征的 模型 ,只需要选择合适的参数 K 就可以进行应用。

    2024年02月06日
    浏览(78)
  • 【机器学习笔记】7 KNN算法

    欧几里得度量(Euclidean Metric)(也称欧氏距离)是一个通常采用的距离定义,指在𝑚维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。 想象你在城市道路里,要从一个十字路口开车到

    2024年02月21日
    浏览(41)
  • 【机器学习实战】K- 近邻算法(KNN算法)

    K-近邻算法 ,又称为  KNN 算法 ,是数据挖掘技术中原理最简单的算法。 KNN  的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。

    2023年04月20日
    浏览(57)
  • 机器学习——K近邻(KNN)算法

    目录 一、knn算法概述 1.简单介绍 2.工作原理 3.knn算法中常用的距离指标 4.knn算法优势 5.knn算法一般流程 二、knn算法经典实例——海伦约会网站 三、关于天气和旅行适合度的例子 四、总结 K近邻算法(KNN)是一种用于分类和回归的统计方法。k-近邻算法采用测量不同特征值之

    2024年01月16日
    浏览(39)
  • 机器学习——kNN算法之红酒分类

    目录 StandardScaler的使用 KNeighborsClassifier的使用 代码实现 数据集介绍 数据集为一份红酒数据,总共有 178 个样本,每个样本有 13 个特征,这里不会为你提供红酒的标签,你需要自己根据这 13 个特征对红酒进行分类。部分数据如下图: StandardScaler的使用 由于数据中有些特征的

    2024年02月11日
    浏览(38)
  • 机器学习KNN最邻近分类算法

    KNN (K-Nearest Neighbor) 最邻近分类算法,其核心思想“近朱者赤,近墨者黑”,由你的邻居来推断你的类别。 图中绿色圆归为哪一类? 1、如果k=3,绿色圆归为红色三角形 2、如果k=5,绿色圆归为蓝色正方形 参考文章 knn算法实现原理:为判断未知样本数据的类别,以所有已知样

    2024年04月10日
    浏览(68)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(43)
  • 【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 is_array() 可以 「检测」 变量是不是 「数组」 类型。 语法 参数 $var :需要检

    2024年02月16日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包