python 数据分析可视化实战 超全 附完整代码数据

这篇具有很好参考价值的文章主要介绍了python 数据分析可视化实战 超全 附完整代码数据。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

代码+数据:https://download.csdn.net/download/qq_38735017/87379914

1.1 数据预处理


1.1.1 异常值检测

①将支付时间转为标准时间的过程中发生错误,经排查错误数据为‘2017/2/29’,后将其修改为‘2017/2/27’。

②经检测发现部分订单应付金额与实付金额都为0,抹去这部分异常数据。

③在检测过程中发现部分订单中商品金额异常,但由于不确定是否进行了调价或促销,所以并未清除这部分异常订单。

1.1.2 属性修改

①提取售卖机设备id后五位,方便后续处理。

②并不清楚后续任务是否需要表中部分属性信息。所以并未删除表中属性。

图1-1-1异常值监测和属性修改后部分数据

python 数据分析可视化实战 超全 附完整代码数据

1.1.3 合并信息

以商品名称作为关键词,将附件二中商品信息添加到附件一中。添加后如下图所示。

图1-1-2合并附件1,2后的数据

python 数据分析可视化实战 超全 附完整代码数据

1.1.4 按售货机提取数据

因不知道每个地点是否只有一台售货机,所以通过循环获得存有售货机设备ID的列表,并根据设备id进行分组,将每台售货机的销售数据保存至csv文件中,文件名分别为‘task1-1A.csv’ ‘task1-1B.csv’ ‘task1-1C.csv’ ‘task1-1D.csv’ ‘task1-1E.csv’

1.2 任务1.2


提取各售货机五月份销售数据,计算各售货机的订单量和交易额最后汇总获得总订单量和交易额。获得结果如下表。

表1-2-1各售货机五月销售情况及汇总

售货机;数据类

1A

1B

1C

1D

1E

ALL

交易额

2392.1

5699

3729

3681

3385.1

18886.2

订单量

553

1287

782

860

750

4232

由上表可得,B售货机销售情况最好,A售货机销售情况最差,C,D,E售货机的销售情况相似。

1.3 任务1.3


任务要求计算每台售货机的每个月的每单平均交易额和每个月的日均交易量。

每个月的每单平均交易额:先通过月份进行分组,对每组内交易额进行加和,最后获取魅族交易单数,相除即可。

每个月的日均交易量:先通过月份进行分组,判定若是1,3,5,7,8,10,12则除31,除二月外其他则除20,2月则除28。即可得到每个月的日均交易量。

表1-3-1 A售货机每月的每单平均交易额与日均订单量

1A

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

每单平均交易额

3.74

3.09

4.31

3.82

4.33

4.06

4.26

3.32

3.91

3.9

3.86

3.58

日均订单量

8.26

5.04

6.19

14.19

17.84

33.26

10.16

23.03

31.65

38.1

39.03

53.48

表1-3-2 B售货机每月的每单平均交易额与日均订单量

1B

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

每单平均交易额

4.68

3.64

3.59

4.16

4.43

3.84

3.93

3.8

4.14

3.68

4.29

4.17

日均订单量

11.42

9.21

11.29

28.87

41.52

83.16

26.16

57

132.9

89.48

161.65

104.9

表1-3-3 C售货机每月的每单平均交易额与日均订单量

1C

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

每单平均交易额

4.36

3.83

3.77

4.42

4.77

4.52

4

3.91

4.44

4.29

4.36

3.95

日均订单量

12.13

7.43

8.48

23.61

25.23

60.48

24.55

40.61

53.97

71.19

62.61

76.55

表1-3-4 D售货机每月的每单平均交易额与日均订单量

1D

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

每单平均交易额

3.75

3.26

3.61

4.1

4.28

4.08

4.41

3.58

4.14

4.12

4.28

3.67

日均订单量

11.81

6.61

8.55

19.35

27.74

59.65

11.1

31.65

56.13

65.19

65.39

71.19

表1-3-5 E售货机每月的每单平均交易额与日均订单量

1E

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

每单平均交易额

4.52

3.86

3.59

4.06

4.51

4.07

4.11

3.36

4.31

4.03

4.48

3.8

日均订单量

10.77

4.07

8.23

14.32

24.19

53.58

15.32

21.45

33.52

50.35

37.39

64.42

二、数据分析与可视化


2.1 任务2.1


绘制2017年6月销量前五的商品销量柱状图:先将时间转换为标准格式,再讲时间列换位到索引上,用户输入要绘制那一月的销量柱状图,通过循环遍历得到次月商品名单,创建等长零列表,两列表压缩成字典,依次更新字典中商品销量,根据销量对字典进行排序,获取用户画前几的柱状图,绘图。

图2-1-1六月份销量前五的商品及其销量

python 数据分析可视化实战 超全 附完整代码数据

2.2 任务2.2


2.2.1 绘制每台售货机每月总交易额折线图

读取数据后先将支付时间转换为标准时间并换位到索引,新建用于存储总交易额的空列表,通过resample和sum获得每月的交易额并存除到列表中。新建月份列表用作x轴。设定画图参数,画图。

图2-2-1每台售货机每月总交易额折线图

python 数据分析可视化实战 超全 附完整代码数据

由上折线图可得,所有售卖机销售额在整体上都呈上升趋势,且在6月出现小高峰,总体上B售卖机销售额高于其他售货机。

2.2.2 总交易额月环比增长率

读取数据后先将支付时间转换为标准时间并换位到索引,新建用于存储总交易额的空列表,通过resample和sum获得每月的交易额并存除到列表中。

通过循环计算所有月环比增长率,并存除到列表中

设定画图参数,画图。

如下列2-2-2.1,2-2-2.2,2-2-2.3,2-2-2.4,2-2-2.5五张图所示:

图2-2-2.1第一台售货机每月环比增长图

python 数据分析可视化实战 超全 附完整代码数据

图2-2-2.2第二台售货机每月环比增长图

python 数据分析可视化实战 超全 附完整代码数据

图2-2-2.3第三台售货机每月环比增长图

python 数据分析可视化实战 超全 附完整代码数据

图2-2-2.4第四台售货机每月环比增长图

python 数据分析可视化实战 超全 附完整代码数据

图2-2-2.5第五台售货机每月环比增长图

python 数据分析可视化实战 超全 附完整代码数据

从上方五张月环比增长图来看,每个售货机在2,3,8月都出现了负增长的情况,在第二台售货机的11月也出现了负增长的情况。在A售货机中,增长的月环比整体呈一个下降趋势,在B售货机中,增长的月环比整体呈先升后降趋势,在C售货机中,增长的月环比整体呈一个下降趋势,在D售货机中,增长的月环比整体呈起伏趋势,在E售货机中,增长的月环比整体呈一个平稳趋势。

2.3 任务2.3


各售货机毛利润站总毛利润比例饼图:现在附加二中读取分类标准,将饮料类存放在饮料类列表中,非饮料类存放在非饮料类列表中,通过循环和判断的结合,如果商品在饮料类中则应付金额0.25,如果商品在非饮料类中则应付金额0.2。将五个售货机的毛利润放在列表中设置参数进行画图。

如下图所示:

python 数据分析可视化实战 超全 附完整代码数据

如图所示售卖机B毛利润所占比例最大,占比为33.55%,A,E售卖机毛利润所占比例最少,A为最低只占11.57%,整体呈BCDEA依次下降趋势。

2.4 任务2.4


每月交易额均值气泡图:读取数据,将时间调整至标准格式,换位给索引,通过groupby和sum获得每个月二级类销量,十二个月合并到一起,对空缺值进行处理(设置为0),处理列名,组成索引为商品名称,属性为12个月份,值为销售额的表。

设置参数,绘图:

python 数据分析可视化实战 超全 附完整代码数据

由气泡图可得,茶饮料,功能饮料,乳制品从高到低依次占据了交易额均值前三的位置。同时也发现所有商品以半年为一个周期,交易额均值每个月依次增加。

2.5 任务2.5


绘制售货机C6,7,8三个月订单的热力图:读取数据,支付时间调整至标准格式并设为索引

通过分组获取确定日期销量,并放入矩阵对应位置中,将矩阵转换为dataframe格式,更新索引和属性。设置画图参数并画图。

图2-5-1 C售货机6月份订单量热力图

python 数据分析可视化实战 超全 附完整代码数据

图2-5-2 C售货机7月份订单量热力图

python 数据分析可视化实战 超全 附完整代码数据

图2-5-3 C售货机8月份订单量热力图

python 数据分析可视化实战 超全 附完整代码数据

从上图可得,在六月份时销售基本集中在上旬和下旬,中旬占小部分,交易时间集中于下午,16点左右。

在七月份时销售基本集中在下旬和上旬,中旬占小部分,交易时间集中于下午,16点左右。

在八月份时销售基本集中在中旬,中旬占小部分,交易时间集中于下午,16点左右。

由此可得,在六七八月时,人们通常在八点以后才进行购物活动,可以赶在八点之前进行补货,保证销售供应。同时在下午16点左右会迎来销售高峰,所以赶在16点之前进行检查,对缺货商品进行补货。

三、自动售货机画像


3.1 贴标签


设定评价指标=销量* 0.6+毛利润*0.4

给所有商品贴标签:读取数据,通过商品名进行分类,并得出统计数量作为销量,得到销量。听过饮料与非饮料类,通过商品计算获得毛利润,将销量和毛利润通过商品合并入总表中。计算获得评价指标。将评价指标由高到低降序排列,取排名前5%作为热销类商品,5%-70%作为正常销售类商品,剩余为滞销类商品,将类别存入销售情况列中。

3.2 画像


通过扩展后的标签生成画像。取评价指标前50个进行画像

3-3-1 A售货机画像

python 数据分析可视化实战 超全 附完整代码数据

3-3-2 B售货机画像

python 数据分析可视化实战 超全 附完整代码数据

3-3-3 C售货机画像

python 数据分析可视化实战 超全 附完整代码数据

3-3-4 D售货机画像

python 数据分析可视化实战 超全 附完整代码数据

3-3-5 E售货机画像

python 数据分析可视化实战 超全 附完整代码数据

由上图可见,“东鹏特饮”,“怡宝纯净水”,“营养快线”“阿萨姆奶茶”等销量在ABCDE售货机上得评价都较为突出,应加大这部分的商品的供应量,以保证不缺货。

四、业务预测


4.1 预测原理与能否通过已有数据进行预测的原因


由于已有数据实在是太少了,我不认为可以在此基础上可以得到较为良好的预测模型。

即使我认为不能得到良好的模型,但还是要预测试验一下,考虑到数据量极其少,所以我先用了对小样本较好的SVM进行回归并预测。

预测原理:

python 数据分析可视化实战 超全 附完整代码数据
python 数据分析可视化实战 超全 附完整代码数据

4.2 预测结果


对数据的要求:最好多给几年的数据,只有一年的数据误差过于巨大。

预测结果:

A

预测销售额

均方误差

解释方差

可决系数

饮料

911.7

194717

0.8616

0.8609

非饮料

476.7

281774

0.37

0.3314

B

预测销售额

均方误差

解释方差

可决系数

饮料

2182

8250885

0.6096

0.5642

非饮料

455.8

2369291

0.5355

0.4398

C

预测销售额

均方误差

解释方差

可决系数

饮料

1452

1297623

0.7408

0.707

非饮料

721

1010230

0.3505

0.2915

D

预测销售额

均方误差

解释方差

可决系数

饮料

1329.8

1174716

0.7138

0.7103

非饮料

503

946773

0.2586

0.2554

E

预测销售额

均方误差

解释方差

可决系数

饮料

717.4

717113

0.643

0.6027

非饮料

780

630190

0.4312

0.4187

下列图为对比图(可若看不清可将图拖大):

图4-2-1 A售货机饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-2 A售货机非饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-3 B售货机饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-4 B售货机非饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-5 C售货机饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-6 C售货机非饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-7 D售货机饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-8 D售货机非饮料类预测

python 数据分析可视化实战 超全 附完整代码数据

图4-2-9 E售货机饮料类预测文章来源地址https://www.toymoban.com/news/detail-432203.html

python 数据分析可视化实战 超全 附完整代码数据

到了这里,关于python 数据分析可视化实战 超全 附完整代码数据的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python利用线性回归、随机森林等对红酒数据进行分析与可视化实战(附源码和数据集 超详细)

    需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 下面对天池项目中的红酒数据集进行分析与挖掘 1:导入模块 2:颜色和打印精度设置 3:获取数据并显示数据维度 字段中英文对照表如下   然后利用describe函数显示数值属性的统计描述值  显示quality取值的相关信息 显示

    2023年04月13日
    浏览(53)
  • 数据分析实战——星巴克门店数量可视化分析

    数据背景:数据源来自与Kaggle: Starbucks Locations Worldwide | Kaggle,囊括了截至2017/2月份全球星巴克门店的基础信息,包括品牌名称、门牌地址、所在国家、经纬度等一系列详细的信息。 数据介绍: 字段名称 解释说明 Brand 品牌名称 Store Number 门店编号 Store name 门店名称 Ownership

    2024年02月05日
    浏览(42)
  • 汽车销售数据可视化分析实战

    市场需求:各年度汽车总销量及环比,各车类、级别车辆销量及环比 消费能力/价位认知:车辆销售规模及环比、不同价位车销量及环比 企业/品牌竞争:各车系、厂商、品牌车销量及环比,市占率及变化趋势 热销车型:品牌、车类、车型、级别的各top销量 1、数据的读取 2、

    2024年02月16日
    浏览(53)
  • 【数据分析与可视化】pyecharts可视化图表讲解及实战(超详细 附源码)

    需要源码请点赞关注收藏后评论区留言私信~~~ pyecharts是基于Echart图表的一个类库,而Echart是百度开源的一个可视化JavaScript库 pyecharts主要基于web浏览器进行显示,绘制的图形比较多,包括折线图、柱状图、饼图、漏斗图、地图、极坐标图等,代码量很少,而且很灵活,绘制出

    2024年02月01日
    浏览(50)
  • Python-基于长短期记忆网络(LSTM)的SP500的股票价格预测 股价预测 Python数据分析实战 数据可视化 时序数据预测 变种RNN 股票预测

    Python-基于长短期记忆网络(LSTM)的SP500的股票价格预测 股价预测 Python数据分析实战 数据可视化 时序数据预测 变种RNN 股票预测 近些年,随着计算机技术的不断发展,神经网络在预测方面的应用愈加广泛,尤其是长短期记忆人工神经网络(Long Short-Term Memory,LSTM)在各领域、各

    2024年02月03日
    浏览(50)
  • python数据分析及可视化(十四)数据分析可视化练习-上市公司可视化数据分析、黑色星期五案例分析

    从中商情报网下载的数据,表格中会存在很多的问题,查看数据的信息有无缺失,然后做数据的清晰,有无重复值,异常数据,省份和城市的列名称和数据是不对照的,删除掉一些不需要的数据,省份不完整的数据,然后进行数据分析以及可视化,如上市公司中的行业Top5,用

    2024年02月03日
    浏览(58)
  • [小尘送书-第二期]《Power BI数据分析与可视化实战》数据清洗、数据建模、数据可视化设计与高级技法

    大家好,我是小尘,欢迎你的关注!大家可以一起交流学习!欢迎大家在CSDN后台私信我!一起讨论学习,讨论如何找到满意的工作! 👨‍💻博主主页:小尘要自信 👨‍💻推荐专栏: 👨‍💻《1》开发环境配置攻略 👨‍💻《2》Java程序员的成长 👨‍💻《3》2023Java面试实

    2024年02月13日
    浏览(38)
  • MySQL实战项目:淘宝母婴购物数据可视化分析

    文章目录 前言 一、数据获取 1.母婴信息表:tianchi_mum_baby.csv 2.购物行为表: tianchi_mum_baby_trade_history.csv 二、数据预处理:  1.修改数据类型 2.检查重复数据: 3.检查空格 4.去异常 三.数据分析 1.流量分析 2.类别分析 3.性别分析 总结 母婴用品是淘宝的热门购物类目,随着国家鼓

    2024年02月04日
    浏览(72)
  • 大数据可视化——基于Python豆瓣电影数据可视化分析

    本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示,构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据,我们提供了一个全面的电影信息平台,为用户提供深入了解电影产业趋势、影片评价与演员表现的工具。项目的关键步骤包括

    2024年02月04日
    浏览(83)
  • 《PySpark大数据分析实战》-27.数据可视化图表Pyecharts介绍

    📋 博主简介 💖 作者简介:大家好,我是wux_labs。😜 热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP)、TiDB数据库认证SQL开发专家(PCSD)认证。 通过了微软Azure开发人员、Azure数据工程师、Azure解决

    2024年01月24日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包